量子计算的发展,依赖于量子比特硬件性能的持续突破与软件生态系统的协同演进。硬件决定了量子计算能力的上限,而软件则定义了如何有效利用并最终将这种潜力转化为科研与产业价值。当前,多数研究集中于底层物理系统的构建,其控制系统往往与特定硬件高度绑定,依赖科研人员手动进行资源分配、调度与脉冲编译。随着量子比特规模的扩张与计算任务的日趋复杂,这种模式已成为制约量子计算发展的瓶颈。因此,发展一个层次清晰、接口标准、具备普适性的大规模量子比特操控软件体系,已成为本领域的迫切需求。
为应对这一挑战,我们构建了“量子计算与量子模拟云平台”(https://quantumclouds.cn)。该平台旨在建立连接用户与前沿量子计算资源的桥梁,将一系列独立的量子软件工具集成为一个功能完备、协同工作的在线环境,从而为科研、教学与开发人员提供一个高效、易用的量子计算软件生态。平台的核心功能覆盖了量子系统的模拟、编译与操控全流程。
1. 平台集成的多维度量子系统模拟引擎
- 量子线路模拟器:包括支持高精度仿真的全振幅模拟器与适用于更大规模特定结构线路的张量网络模拟器。
- 量子动力学模拟器:平台提供原子量子计算专用动力学模拟器,从系统哈密顿量出发,通过高阶时间演化算法精确还原原子比特的真实动力学过程,内置相位抖动、频率漂移等噪声模型。也提供通用动力学模拟器研究普适性二能级系统演化。
- 大规模量子系统模拟器 (TBPLaS):专用于大尺度凝聚态物理问题,可高效模拟数十亿原子规模的复杂量子体系,为新材料与量子物性研究提供独特计算支持。
2. 平台内嵌的全流程编译服务
- 逻辑层编译:将用户输入的标准量子线路(如 OpenQASM)进行深度优化,通过线路重构压缩门数与深度,并映射为中性原子体系支持的原生逻辑门集合。
- 脉冲层编译:基于优化后的逻辑线路,自动进行物理层编译,包括原子量子比特最优布局映射,并生成可在硬件上精确执行的脉冲波形序列。
3. 平台的远程自动化硬件操控接口
云平台提供标准化远程操控接口,编译器生成的脉冲时序文件可远程自动加载驱动原子量子计算原型机。用户无需操作复杂设备,即可完成算法提交、编译优化、真机执行与数据回传的全流程闭环,极大提升研发效率。
The advancement of quantum computing relies on the synergistic evolution of breakthroughs in quantum hardware and the development of a comprehensive software ecosystem. While hardware capabilities determine the upper limits of quantum computation, it is the software that dictates how effectively this potential can be harnessed and translated into scientific and industrial value. Currently, a significant portion of research focuses on the development of underlying physical systems, with control systems tightly coupled to specific hardware and reliant on manual resource allocation, scheduling, and pulse compilation by researchers. As the scale of quantum bits and the complexity of computational tasks increase, this paradigm has become a bottleneck, hindering progress, making the development of a standardized, hierarchical, and universally applicable software architecture for large-scale qubit manipulation an urgent priority.
To address this challenge, we have developed the Quantum Computation and Simulation Cloud Platform (https://quantumclouds.cn). The platform integrates independent quantum software tools into a fully functional, collaborative online environment, bridging users with cutting-edge quantum computing resources. It provides a robust and user-friendly software ecosystem for quantum computing, covering the full workflow of quantum system simulation, compilation, and control.
1. Integrated Multi-Faceted Quantum System Simulation Engines
- Quantum Circuit Simulators: Full-amplitude simulator for high-precision medium-scale systems and tensor network simulator for large-scale structured circuits.
- Quantum Dynamics Simulators: Dedicated dynamics simulator for neutral atom quantum computing, reproducing atomic qubit dynamics from the Hamiltonian with high-order time-evolution algorithms, including phase jitter and frequency drift noise models. Also offers a general-purpose simulator for universal two-level systems.
- Large-Scale Quantum System Simulator (TBPLaS): Specialized for large-scale condensed matter problems, efficiently simulating up to several billion atoms, supporting research on Moiré superlattices, fractals, and advanced materials.
2. Embedded End-to-End Compilation Service
- Logical Layer Compilation: Optimizes standard quantum circuits (e.g., OpenQASM), reducing gate count and depth, mapping to the native gate set of neutral atom systems.
- Pulse Layer Compilation: Converts optimized logical circuits into physical pulses, performing optimal qubit layout mapping and generating executable waveform sequences.
3. Remote and Automated Hardware Control Interface
Provides a standardized remote control interface allowing pulse sequences to be loaded and executed automatically on neutral atom quantum prototypes, enabling a full closed-loop workflow entirely in the cloud, greatly enhancing R&D efficiency.