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Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are
stimulating significant investigations on moiré structures that possess a tunable moiré potential.
Optical response can provide insights into the electronic structures and transport phenomena of
non-twisted and twisted moiré structures. In this article, we review both experimental and
theoretical studies of optical properties such as optical conductivity, dielectric function,
non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal
boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive
introduction to the widely employed methodology on optical properties is presented. After,
moiré potential induced optical conductivity and plasmons in non-twisted structures are
reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré
heterostructures. Next, recent investigations of twist-angle dependent optical response and
plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical
properties and plasmons could contribute to the understanding of the many-body effects and
superconductivity observed in moiré structures.

Keywords: moiré structures, optical conductivity, plasmons, twisted bilayer graphene

1. Introduction

Two-dimensional (2D) materials, such as graphene [1],
hexagonal boron nitride (hBN) [2, 3], transition metal dichal-
cogenides (TMDCs) [4, 5] and many others [6, 7], have
been widely investigated over the past two decades [8].
The fact that the isolated atomic planes could be stacked

∗
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layer by layer via weak van der Waals interactions, forming
moiré structures, provides an avenue to realize functionalit-
ies distinct from the components of the moiré systems [9].
Interestingly, heterostructures of two materials with differ-
ent lattice constants form large-scale structures that display
a moiré pattern, which we will refer to as non-twisted moiré
structures. For example, by depositing graphene on top of
hBN, if they are aligned, we would obtain a graphene-hBN
moiré structure with a moiré length of around 14 nm [10].
Moiré structures can also be obtained by rotating two layers
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with a relative twist angle, which are commonly known as
twisted moiré structures [11, 12]. Twisted moiré structures
have attracted tremendous attentions due to the emergence
of a rich phase diagram of correlated states. For instance,
in twisted bilayer graphene (TBG), when two graphene lay-
ers are rotated by an angle of 1.05◦, known as the magic
angle, flat bands appear at the charge neutrality point [13,
14]. As a consequence, exotic phenomena are observed, ran-
ging from unconventional superconductivity [15–17] to cor-
related insulator phases [18–22], topological Chern insulators
[23, 24], ferromagnetism [25–27], anomalous Hall effects
[26, 28, 29] and non-linear Hall effects [30]. These find-
ings have also motivated further search of electronic flat
bands in other twisted moiré structures like twisted trilayer
graphene (TTG) [31–33], twisted double bilayer graphene
(TDBG) [34–37], twisted bilayer TMDCs [38–44], twisted
bilayer hBN [45–48], and so on. In fact, correlated insulat-
ors and tunable superconductivity have also been found in
twisted multilayer graphene systems [49–58]. Emergence of
flat bands can also induce orbital ferromagnetism and cor-
related insulator states in non-twisted moiré structures such
as aligned trilayer ABC graphene-hBN [59–62], and hBN-
graphene-hBN heterostructures [63]. On the other hand, twis-
ted bilayer TMDCs can also be exceptional frameworks for
investigating many-body insulators [64, 65], Hubbard physics
[66, 67] and the quantum anomalous Hall effect [68–71].
More importantly, large-scale moiré structures also enables
exciting photonic and optoelectronic properties, like moiré
excitons [72] and polaritons as, reviewed in [73]. In the
search for downscaling technological devices, optical proper-
ties, such as optical conductivity [74–76], dielectric function
[77–80], etc have been extensively explored in 2D materi-
als. The unique electronic structure of graphene has motivated
research focused on the fields of non-linear plasmon response
[81], plasmon-polariton [82, 83], and other plasmonics [84].
From the perspective of applications, graphene stands out to
be a very promising candidate for terahertz to mid-infrared
applications [85], such as modulators, polarizers, mid-infrared
photodetectors or mid-infrared vibrational spectroscopy [86,
87]. Furthermore, to make significant advances in the con-
finement of light, plasmons have been extensively studied in
graphene and TMDCs and have been shown to have poten-
tial applications for the development of new state-of-the-art
optical devices [86, 88–92]. From a fundamental point of
view, the optical and plasmon properties of 2D materials are
extremely sensitive to their band structure. Thus, the optical
properties could shed light on electronic structure [93], which
could serve to further investigate exotic quantum phases. Since
moiré structures can exhibit distinct electronic properties from
their building block counterparts, moiré structures such as
TBG can lead to numerous exciting optical phenomena and
could be used in future generations of optoelectronic devices
[94, 95]. Here, we present an overview of the recent progress
in the matter of emerging linear optical response, plasmons
and their relations to other interesting properties in both non-
twisted and twisted moiré structures.

This review is organized as follows: section 2 introduces
the common experimental and theoretical methods for invest-
igating optical properties and plasmons. Optical properties
and plasmons are described for non-twisted moiré struc-
tures, and for twisted moiré structures in sections 3 and 4,
respectively. The relation to other properties such as many-
body effects and superconductivity, and a brief descrip-
tion of the non-linear optical response are discussed in
section 5. In section 6 we give a final summary and future
perspectives.

2. Methodology

This section is devoted to the introduction of the exper-
imental techniques and theoretical framework that are
needed to study the linear optical response of moiré
structures.

2.1. Experimental techniques

In general, 2D materials and 2D material-based moiré struc-
tures are expected to show strong light–matter interaction
and enriched photoresponses. For 2D systems, the response
to an applied electromagnetic field can be mainly charac-
terized by the optical conductivity, σ(ω). Since the optical
conductivity is uniquely determined by the band structure,
it is a powerful tool to understand the electronic properties
of materials. Experimentally, infrared spectroscopy (IR) is a
widely used technique to measure the optical conductivity of a
material [86]. Another promising technique is the scattering-
type scanning near-field optical microscope (s-SNOM) [96],
which could provide the propagation of the surface plasmons
by measuring the scattering amplitude Sopt(x). The advant-
age of the s-SNOM is that, from the plasmon dispersion, it
is possible to extract the optical conductivity σ(ω) and loss
function S(q,ω), enabling experimental access to both the
electronic band structure and electron–hole excitations of the
systems [97, 98]. Electron energy-loss spectroscopy (EELS)
has also advanced in recent decades to provide the structural
and optical characterization of materials by correlating the
acquired infrared-to-ultraviolet spectral data with morpholo-
gical and structural information derived from secondary elec-
tron images (in scanning electron microscope (SEM)) or the
high-angle annular dark-field signal (in transmission electron
microscope (TEM)) [99]. The loss function S(q,ω) can be
extracted from the EELS spectra. Currently, the measured res-
ults are a collection of signals from large area samples, which
are unable to provide the local structure of the moiré sys-
tem and could be influenced by extrinsic effects, for example,
twist angle inhomogeneities or strain present in the sample.
Thanks to the development of new techniques, such as 4D
scanning TEM spectroscopy [100] and near-field scanning
[101], it is possible to locally probe the optoelectronic prop-
erties and could be used to study the properties of moiré
structures.
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2.2. Theoretical methods

Concerning the theoretical approach, through linear response
theory, we can obtain optical properties by calculating differ-
ent response functions. For example, the optical conductiv-
ity σ(ω), and the polarization function Π0(q,ω) are evaluated
from the current-current and non-interacting density–density
response functions, respectively. Other optical properties such
as the dielectric function ε(q,ω), loss function S(q,ω) and
the optical absorption coefficient can be extracted from those
quantities, as discussed below.

2.2.1. Linear optical response. The optical conductivity can
be derived using the Kubo formula [102] and can be written as
the Kubo–Greenwood equation [103]

σα1α2 (ω) =
gsi

(2π )D

ˆ
BZ
dDk

∑
l,l ′

nF (Ekl ′ )− nF (Ekl)
Ekl−Ekl ′

×

〈
kl

′ |Jα1|kl
〉〈

kl |Jα2|kl
′
〉

Ekl ′ −Ekl+ h̄ω+ iδ
, (1)

where gs is the spin degeneracy, D is the dimension of moiré
structures and is typically set to 2 for 2D materials. Jα1 and
Jα2 are current operators along the α1 and α2 directions,
respectively. nF is the Fermi–Dirac distribution. Eigenvalues,
Ekl, and eigenstates, |kl⟩, with band index l and momentum k,
are needed to describe optical band transitions between l and
l
′
bands. The integration runs over the whole Brillouin zone

(BZ).
By combining the Kubo formula with the tight-binding

propagation method (TBPM), the optical conductivity (omit-
ting the Drude contribution at ω= 0) could be expressed as
[104, 105]

σα1α2 (ω) = lim
ε→0+

e−β h̄ω − 1
h̄ωΩ

ˆ ∞

0
e−εt (sinωt− icosωt)× 2Im

×
{
⟨φ

∣∣∣nF (H)eiHtJα1e
−iHt [1− nF (H)]Jα2

∣∣∣φ⟩
}
dt,

(2)

where Ω is the area of the system, β = 1/(kBT) being kB the
Boltzmann constant,H is the Hamiltonian, and |φ⟩ is the initial
state of the system,which is a random superposition of all basis
states

|φ⟩=
∑
i

ai|i⟩, (3)

where |i⟩ are all basis states in real space and ai are random
complex numbers normalized as

∑
i |ai|2 = 1.

The calculation of equation (2) scales linearly with the
number of states N of the system in real space. In contrast, the
scaling would beO(N3) if we were to solve equation (1) using
the exact diagonalization method to obtain the eigenstates and
eigenvalues of the system. Therefore, calculating the optical
conductivity using equation (2) has advantages when deal-
ing with non-periodic moiré structures, such as 30◦ dodeca-
gonal graphene quasicrystal [106–110] and large-scale peri-
odic moiré structures [105]. Interestingly, disorder effects on

optical conductivity can be also easily be considered with this
real-space method [111]. It is important to note that there are
similar real-space methods with O(N) time scaling that do not
require time propagation to calculate transport conductivity
σαβ (ω = 0) [112, 113].

The optical conductivity corresponds to the optical absorp-
tion spectrum that can be extracted from raw data of IR using
multilayer Kramers–Kronig analysis program [114], and is
related to the transmission of incident light perpendicular to
the system, which is given by [115]

T=

∣∣∣∣1+ 2π
c
σ (ω)

∣∣∣∣−2

≈ 1− 4π
c
Re{σ (ω)} . (4)

Absorbance at normal incidence could be expressed as [75]

A=
4π
c
Re{σ (ω)} , (5)

where Re{σ(ω)} is the real part of optical conductivity.

2.2.2. Polarization function. The polarization function,
Π0, also known as charge susceptibility or non-interacting
density–density response function, describes the charge fluc-
tuation or single-particle transitions. Therefore, it is imperat-
ive to further describe collective excitations and screening in
materials. For small-scale systems, such as large-angle twis-
ted moiré structures whose eigenstates and eigenvalues can be
obtained by diagonalization of the Hamiltonian, the polariz-
ation function can be solved by using the Lindhard function
[116–118]

Π0 (q,ω) =
gs

(2π)2

ˆ
BZ
d2k

∑
l,l ′

nF (Ek ′l ′)− nF (Ekl)

Ek ′l ′ −Ekl−ω− iδ

× |⟨k ′l ′|eiq·r|kl⟩|2, (6)

where k ′ = k+q, δ → 0+. Generally, the integral is taken
over the whole BZ, same as in equation (1). Note here that
we named the polarization functionwithoutmany-body effects
and local field effects (LFEs) as Π0(q,ω).

Combining the TBPM with the Kubo formula, the polariz-
ation function can also be described as [105, 119]

Π0 (q,ω) =− 2
Ω

ˆ ∞

0
dt eiωtIm⟨φ|nF (H)eiHtρ(q)e−iHt

× [1− nF (H)]ρ(−q) |φ⟩, (7)

in which ρ(q) =
∑

i c
†
i ciexp(iq · ri) is the density operator,

ri is the position of the ith orbital and Ω is the area
of a moiré structure system, |φ⟩ has the same form as
equation (3). Equation (7) is equivalent to the Lindhard func-
tion (equation (6)), which has been widely used in the study of
single-layer graphene and TBG [120]. The Lindhard function
has the advantage that it can be used to study specific attribu-
tions of band transitions, such as the intraband and interband
contributions to the polarization function in moiré structures,
while this information cannot be extracted from equation (7).
However, when the full-band contribution to the polarization
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function is required to investigate screening effects in moiré
structures, equation (7) will be a reliable choice with lower
computational complexity in comparison to the calculation of
the Lindhard function (6) since it includes all possible elec-
tronic excitations in moiré structures. More details related to
the TBPM and equation (7) are discussed in [105].

2.2.3. Dielectric function and plasmons. The dielectric
function can be derived from the polarization function,
Π0(q,ω), or the optical conductivity σ(ω). In the random
phase approximation (RPA), the dielectric function relates dir-
ectly to Π0(q,ω) as

ε(q,ω) = 1−V(q)Π0 (q,ω) , (8)

where V(q) is the Fourier component of the Coulomb inter-
action. For example, the pure 2D Coulomb interaction is
V(q) = 2π e2/(εBq) with εB the background dielectric con-
stant. Specifically, in the long wavelength limit q→ 0, the
RPA dielectric function is linked to σ(ω) as [121]

ε(q,ω) = 1+
iq2V(q)

ω
σ (ω) . (9)

Note that the accuracy of equation (9) is lower when q gets
larger due to the local approximation used in the optical con-
ductivity, but equation (8) is valid even for large q because the
polarization function is not a local property and dependent on
q, whereas the optical conductivity σ(ω) is independent on q.
The internal electronic screening potential can be given by the
dielectric function as [122]

Vscr (q,ω) =
V(q)
ε(q,ω)

. (10)

A plasmon mode with momentum q and frequency ωp can be
obtained from the dielectric function with ε(q,ω) = 0 [122].
The plasmon mode can be also measured from the electron
energy loss function

S(q,ω) =−Im
1

ε(q,ω)
, (11)

with a sharp pole when ω = ωp. The loss function is closely
related to results obtained with EELS in experiments since
the peaks in the data are related to the energy of the plas-
mon modes. Besides the experimental quantities of σαβ(ω)
and S(q,ω) that can be directly reproduced by the numerical
calculations, these optical quantities could shed light on calcu-
lated electronic structures, for example, the bandwidth, band
gap and Fermi velocity and so on, which is a good starting
point to further understand exotic quantum phases.

Here, it should be noted that the limitation of RPA when
the charge density is small and dimension of moiré structures
is low, since vertex corrections could not be safely ignored
in the dielectric function calculation [123]. Based on many-
body perturbation theory, the effects of vertex corrections on
the dielectric function can be evaluated by taking into account
the interaction between two non-interacting Green functions

[124–126], which are employed to derive the non-interacting
density–density response function equation (6). Actually, pre-
vious studies have shown that vertex corrections has an impact
on polarization function and plasmons in both doped and
undoped graphene [125–127]. Beyond RPA, the exchange–
correlation (EX) effects also play a role in affecting the dielec-
tric function and plasmons [128]. But, the EX effects can be
incorporated into the RPA scheme using local-field correc-
tions, which could be formulated by a dielectric functionwith a
local-field factor that cannot be determined by a self-consistent
calculation [129–132].

2.2.4. LFEs. When confronted with inhomogeneous elec-
tron systems, it is crucial to consider the LFEs [133, 134],
via an Umklapp process in the analysis of optical properties
and plasmons [135–137]. The LFEs become stronger as the
momentum transfer q increases, since then the wavelength of
the excitation becomes smaller and one has to take the inhomo-
geneities of the electronic system under consideration. For
example, for a moiré structure with large moiré length and/or
large wavenumber q, when the investigated q becomes com-
parable to the length of the first reciprocal moiré lattice vec-
tor, the LFE could significantly change the plasmon properties.
The polarization function of including the LFE is given by

ΠG,G ′ (q,ω) =
gs

(2π)2

ˆ
BZ
d2k

∑
l,l ′

nF (Ek ′l ′)− nF (Ekl)

Ek ′l ′ −Ekl−ω− iδ

×⟨kl|e−i(q+G)·r|k ′l ′⟩⟨k ′l ′|ei(q+G ′)·r|kl⟩,
(12)

where G and G ′ are arbitrary reciprocal lattice vectors. The
dielectric function within LFE is given by the followingmatrix
under RPA

εG,G ′ (q,ω) = δG,G ′ −V(q+G)ΠG,G ′ (q,ω) , (13)

with the 2D Coulomb potential V(q+G) = 2π e2/εB(q+G).
The off-diagonal matrix elements in equation (13) give rise
to LFE. If G= G ′ = 0, the dielectric matrix equation (13)
reduces to the Lindhard dielectric function in equation (8). The
optically detected macroscopic dielectric function is given by
[133, 134]

ϵM (q,ω) =
1

ε−1
G=0,G ′=0 (q,ω)

, (14)

where ε−1 is the inverse of the matrix εG,G ′ . By comparing
the macroscopic dielectric function ϵM(q,ω) to equation (8),
one can know how LFE affect optical properties in a crystal
[135]. The energy loss function is formulated as S(q,ω) =
−Im( 1

ϵM(q,ω) ) =−Im[ε]−1
G=0,G ′=0(q,ω).
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Figure 1. Optical conductivity in monolayer graphene. (a) Illustration of a typical absorption spectrum of doped graphene. Reprinted with
permission from [86]. Copyright (2014) American Chemical Society. (b) First-principles absorbance of graphene with (red line) and without
(blue line) excitonic effects included. Reprinted (figure) with permission from [138], Copyright (2009) by the American Physical Society. (c)
Illustration of the various optical transition processes. Reprinted with permission from [86]. Copyright (2014) American Chemical Society.

3. Optical properties and plasmons in non-twisted
moiré structures

3.1. Optical conductivity in graphene-based moiré structures

The optical properties of the graphene monolayer have many
intriguing features [82–84], such as a constant optical con-
ductivity in the infrared regime and gate-dependent optical
absorbance [86]. As shown in figure 1, firstly, there is a
Drude peak at terahertz (THz) frequencies due to the intra-
band transitions. Secondly, for graphene with doping µ, a min-
imal absorption in the mid-infrared frequencies occurs at finite
ω < 2µ due to Pauli blocking. Thirdly, a transition occurs
around ω ≈ 2µwhere direct interband processes lead to a con-
stant optical conductivity σ0 = π e2/2h. Finally, a sharp peak
is located at 2t (with t the intralayer nearest neighbor hopping
in graphene) arising from the interband transitions between
the two van Hove singularities (VHS), which are logarithmic-
ally divergent points in electronic density of states (DOS) and
corresponding to saddle points of band structure. This peak
becomes red-shifted with a different line shape if we consider
the electron–hole interaction [138].

Graphene is usually supported on top of a hBN substrate to
retain a high quality.When graphene is placed on the hBN sub-
strate, a moiré pattern of 14 nm is formed in aligned samples
due to the 1.8% lattice mismatch between these two 2D
materials [139–141]. Undoubtedly, the periodic moiré poten-
tial induced in the graphene-hBN structure changes signific-
antly the electronic structure of graphene and leads to vari-
ous novel quantum phenomena such as the emergence of the
second-generation Dirac cones (located around some moiré
energy EM), the renormalization of the Fermi velocity, and a
gap opening in the intrinsic Dirac cone [141].

In the graphene-hBN moiré structure, there is a fast sub-
lattice oscillation due to boron and nitrogen sites which res-
ults in a series of periodic potentials acting on the graphene
monolayer [142]. The first one is a scalar potential, which

results from the moiré variation of the onsite terms, the second
is a mass term originated from a local variation of the boron
and nitrogen onsite terms, and a third one is a gauge potential
resulting from the relaxation of the graphene atomic positions
due to the presence of the hBN substrate [142, 143]. The res-
ulting potentials, coupled to the electron pseudospin, can be
probed directly through infrared spectroscopy, because optical
transitions are very sensitive to wave functions of excited
states. Consequently, in the experiment in [142], a remark-
able absorption peak was detected around 2EM ∼ 380 meV,
which was only observed in the graphene-hBN heterostruc-
ture. Moreover, the absorption peaks were found to be very
sensitive to electron doping, which was revealed by a sharp
decrease in its weight while increasing the electron concen-
tration [142]. The sharp drop could not be explained by
the single-particle Pauli blocking effect whose energy was
found to be small, but was due to a renormalization of the
effective potential parameters induced by electron–electron
interactions.

On the other hand, it is well-known that optical conduct-
ivity is typically dominated by the intraband Drude peak and
interband transitions associated with singularities in the DOS.
Theoretical works can provide a better understanding of which
transitions among Bloch bands contribute to the optical con-
ductivity. For instance, DaSilva [145] employed a k·p con-
tinuum Dirac model and the Kubo formula to investigate the
optical conductivity of graphene aligned with hBN (as shown
in figure 2(a)). They discovered that the moiré pattern induced
sharp THz peaks due to transitions between Bloch bands
formed by the moiré potential. The particle-hole asymmetry
of the moiré Bloch bands (see figure 2(b)) was strongly reflec-
ted in the THz and IR conductivity, which was always Drude-
dominated when the Fermi level lied above the Dirac point,
but it was interband-dominated when the Fermi energy lies in
a relatively narrow interval below the Dirac point. In addi-
tion, Abergel and Mucha–Kruczyński [146] suggested that
a study of the absorption spectra as a function of the doping

5
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Figure 2. Valley polarization of graphene-hBN structure under circularly polarized light irradiation. (a) Crystal structure of graphene-hBN
structure in real space for alignment case. (b) The band structure of graphene-hBN in the continuum model. (c) Optical conductivity of
graphene-hBN for K valley and Fermi level EF = 0 eV under circularly polarized light. The magenta (cyan) curve is the conductivity for
LCP (RCP). (d) Distribution of dipole vectors for an interband transition near the EF = 0.0 eV in momentum space. The magenta (cyan)
arrows are the real (imaginary) parts of the dipole vectors. The black hexagon is the moiré BZ and the magenta (cyan) dots at the hexagon
corners are the K (K’) points. (e) The optical conductivity and (f) distribution of dipole vectors for EF =−0.13 eV. Reprinted (figure) with
permission from [144], Copyright (2022) by the American Physical Society.

for an almost completely full first miniband was necessary to
extract meaningful information about the moiré characteristics
from optical absorptionmeasurements as well as to distinguish
between various theoretical proposals for the physically real-
istic interactions between graphene and hBN. One of the main
findings on [146] was the fact that distinct moiré perturbations
can result in similar absorption spectra.

The effect of polarized light was studied in [144]. It was
found that a broken spatial symmetry in the graphene-hBN
structure may induce valley polarization, which could be
investigated by measuring the optical conductivity under cir-
cularly polarized light irradiation, as shown in figures 2(c)
and (e). The conductivity depended on the direction of rota-
tion of the circularly polarized light, especially in the infrared
and terahertz regions. In particular, for a photon energy smal-
ler than 0.1 eV, the difference between left-handed circu-
larly polarized light (LCP) and right-handed circularly polar-
ized light (RCP) became larger. In this energy region, the
interband transition from valence to conduction bands dom-
inated. The real and imaginary parts of the dipole vectors are
orthogonal at the Γ point. Thus, the valley-selective circu-
lar dichroism (valley polarization) was induced by the irra-
diation of circularly polarized light, and was responsible for
the states near the Γ point (figure 2(d)). For hole doping case,
in the region of ω< 0.1 eV, the difference in the optical con-
ductivities between LCP and RCP became larger. The real
and imaginary parts of the dipole vectors are mutually ortho-
gonal at the K and K′ points, which were responsible for the
valley-selective circular dichroism. In fact, the moiré potential
of aligned graphene-hBN structures can be tuned by a twist

angle that continuously change optical intraband and interb-
and transitions in graphene-hBN moiré structures [147].

3.2. Plasmons in graphene-based moiré structures

The plasmons in graphene-based heterostructures [10] have
attracted a lot of attentions due to the fact that plas-
mons in pristine graphene have very promising perspectives
[148, 149]. In this section, we will mainly review plas-
monic properties in graphene-hBN and graphene-metal moiré
structures.

As mentioned in section 3.1, stacking graphene on a hBN
substrate allows to engineer the electronic band structure of
graphene by the induced moiré potential. An important con-
sequence is the emergence of satellite Dirac points in the
moiré minibands [153] since they could give rise to collective
excitations that are different from pristine graphene. In 2014,
a theoretical study on plasmons in graphene-hBN unveiled
that new plasmon modes can be generated due to transitions
between satellite Dirac points, as shown in figure 3(a) [150].
The K-point and M-point plasmon modes (dotted and short-
dashed lines in figure 3(a), respectively), appeared along-
side a Dirac plasmon mode (long-dashed line) in hole-doped
graphene. Based on a continuum model and including the
LFE, further calculations demonstrated a dramatic asymmetry
of the plasmon dispersion at positive and negative poten-
tials, as seen in figure 3(b), and also predicted several plas-
mon modes arising from interband transitions between mini-
bands. Experimentally, the measured optical response using a
s-SNOM tip in moiré-patterned graphene was enhanced with
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Figure 3. Plasmon in graphene-hBN moiré structures. (a) Theoretical predicted plasmon energy relation versus hole-side chemical potential
in a density plot of loss function within LFE (left-hand side) and corresponding miniband structure of graphene-hBN (right-hand side). The
vertical thin solid lines in the density plot denote the doping levels crossing different band edges in the miniband structure. Reprinted
(figure) with permission from [150], Copyright (2014) by the American Physical Society. (b) Particle-hole asymmetric plasmon emerging in
a density plot of loss function within LFE for graphene-hBN moiré structure. Reprinted (figure) with permission from [151], Copyright
(2019) by the American Physical Society. (c1) Illustration of the encapsulated bilayer graphene-hBN field effect transistor. Reproduced
from [152]. CC BY 4.0. (c2) Plasmons from miniband transition in bilayer graphene-hBN structure. Reproduced from [152]. CC BY 4.0.

respect to pristine graphene [97]. A composite plasmon in
graphene-hBN moiré structures was also observed, originat-
ing from intraband transitions near the Fermi energy and pre-
dicted interband transitions corresponding to structure mini-
bands [97]. Nevertheless, up to date, the calculated terahertz
plasmon from [150] and asymmetry plasmon from [151] have
not been observed experimentally. In addition, based on an
antenna-mediated coupling of a bilayer graphene (BLG) field-
effect transistor device, shown in figure 3(c1), miniband plas-
mons in BLG-hBN were also observed (see figure 3(c2)).

The observation of miniband plasmons in graphene-hBN
also motivated the exploration of electronic excitations in
graphene-metal structures. The moiré potential was induced
when Cu atoms were deposited on graphene, forming a moiré
structure, giving rise to extra VHS associated with minibands
(see figure 4(b)). This resulted in a moiré plasmon mode with
energy ~1.5 eV, which was contributed by interband trans-
ition between VHS (as shown in figure 4(a)). The existence of
this plasmon mode was theoretically confirmed by using the
TBPM method [154]. Interestingly, when the moiré potential
induced in chemically doped graphene on the Ir(111) metallic
surface was suppressed, plasmon could be still significantly
modified, generating an acoustic plasmon (AP) mode along
with an intraband Dirac plasmon (DP) mode (see figure 4(c))
[155]. This AP was induced by the screening effect of metallic
materials or graphene-metal hybridization rather than by the

moiré reconstruction and had also been widely studied in pre-
vious works [156–158].

4. Optical properties and plasmons in twisted
moiré structures

4.1. Optical conductivity of TBG

The recent discovery of correlated electronic states and super-
conductivity in TBG [12, 15, 51] has sparked a great interest
in twisted moiré systems. In TBG the interlayer interactions
induce significant distortions in the low-energy bands. This
leads to distinctive electronic effects that differ from those
observed in non-twisted graphene systems. At low angle,
the interference between the moiré periods produces a long
wavelength moiré pattern [14, 159–164]. Characteristic prop-
erties like VHS and band gaps become evident in the infrared
region [115] and theoretical works [14, 159–165] have
demonstrated that the moiré patterns in TBG can give rise to
narrow bands that largely contribute to the correlated effects
observed in this system [15–17, 23, 24, 51, 62, 166–179].

An interesting feature of TBG is that the VHS can be
moved to arbitrary low energies by modifying the twist angle.
One interesting optical analysis of TBG was performed by Yu
et al [180]. In the experiment, different optical conductivities
were obtained by varying the twist angle. As shown in
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Figure 4. Plasmon in graphene-metal moiré structures. (a) High-resolution electron energy loss spectroscopy of graphene on Ru(0001),
acquired with an energy of the primary electron beam Ep of 70 eV. The longitudinal optical (LO) phonon, intraband plasmon, moiré
plasmon and π-plasmon are observed. Reproduced from [154]. © IOP Publishing Ltd. All rights reserved. (b) Moiré VHS in graphene-Cu
moiré structures from density functional theory calculations. Reproduced from [154]. © IOP Publishing Ltd. All rights reserved. (c) The
loss function intensity plot showing an acoustic plasmon (AP) predicted in graphene-metal structure doped with alkali-metal atoms.
Reprinted (figure) with permission from [155], Copyright (2019) by the American Physical Society.

Figure 5. Gate tunable optical absorption of TBG. (a) Optical conductivity σ1 of five TBG samples with five different twist angles. σmono is
the optical conductivity of monolayer graphene. (b) Electronic band diagram of TBG. BE and vHs stand for the band edge of the second
band and the saddle-point van Hove singularity, respectively. There exist two kinds of optical transitions as indicated by the red and blue
arrows. (c) Schematic view of the ion-gel gating circuit and the infrared transmission measurement. EMIM and TFSI are ionic liquids. (d)
Optical conductivity of TBG with various gate voltages VG. The twist angle is θ = 6.4◦. (e) (Left side) The band structure of TBG under
gating. The top band and bottom band shift by ET and EB, respectively. U= ET −EB is their difference. Here, the gap opening is omitted for
clarity. (Right side) Optical transitions of the gated TBG. Reprinted (figure) with permission from [180], Copyright (2019) by the American
Physical Society.

figure 5(b), the low-energy optical spectrum of TBGwas char-
acterized by a linear-band (LB) absorption (pointed out by the
red arrows). This was an indication that the interlayer inter-
action hybridized the LBs of the two monolayers and, as a
consequence, there were two isolated bands with an avoided
crossing with the remote bands. In figure 5(b), the transition
between the saddle-point VHS2 →VHS1 was forbidden by the
lattice symmetry [115]. However, the transition between VHS

and the band edge (BE) of the second band exhibited promin-
ent peaks (peak-α indicated by the blue arrows). Two interest-
ing features, shown in figure 5(a), were found in this exper-
iment: firstly, a frequency-independent conductivity, 2σ0,
which came from the LB transition, and secondly, an angle-
dependent peak-α resulting from the transitions between
VHSs and BE. Interestingly, the peak-α was blueshifted as
the twist angle θ increased, revealing a dependence on the
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Figure 6. Optical conductivity, DOS and band structures of undoped TBG with different symmetry breaking orders. (a) Optical
conductivity, and (b) low energy DOS of the TBG at the CNP in a C2T symmetry breaking state α and in the non-correlated state. (c) Flat
bands of the TBG in the C2T symmetry breaking state. (d) Optical conductivity and (e) DOS for the nematic state η. The optical
conductivity in (d) is plotted along four different directions, illustrated in (f). (f) Sketch of the C3 related Xi directions and of Y1, and the BZ
of TBG with the corresponding symmetry points. (g) Zoom of the flat band structure for the TBG with different values of ηC3 . Note that the
optical conductivity in (a) along the four directions are equal. Reproduced from [185]. CC BY 4.0.

twist angle. Furthermore, by designing an ion-gel gating cir-
cuit (in figure 5(c)) it was possible to investigate the gating
effect on the properties of these devices. It was found that in
the absorption profile, cf figure 5(d) the absorption edge of
σLB had a broadening and was shifted to higher energy, and
(ii) the peak-α was shifted to a lower energy with a reduced
intensity. In addition, a modification of the band structure with
gating was found, because in the presence of a vertical elec-
tric field, figure 5(e), the Dirac cones of each monolayer shif-
ted in opposite directions. This was theoretically described
in [181] and recently in [182], allowing to modify the optical
transitions [183].

Additional evidence of the existence of isolated narrow
bands with an enhanced DOS was reported in 2013 by Zou
et al [184]. By means of a terahertz time-domain spectro-
scopy, the optical conductivity of TBG was obtained at dif-
ferent temperatures in the frequency range 0.3–3 THz. One of
the main findings in this work was a Drude-like response with
a strong peak in the real part of the optical conductivity σ1(ω)
at ~2.7 THz, which was identified as peak-α (figure 5(d)) in
TBG with θ = 1.16◦, and was caused by the presence of the
VHS in the commensurate structure.

Interestingly, TBG shows an angle-dependent optical
conductivity, which could be utilized to characterize the
twist angle. For example, Sunku et al [93] combined

nano-photocurrent and infrared nanoscopy methods, which
enabled access to the local electronic phenomena at length
scales as short as 20 nm, and identified domains of varying
local twist angles. In addition, Calderón and Bascones [185]
reported that the optical conductivity measurements could be
used to distinguish different symmetry breaking states, and
may reveal the nature of the correlated states in the flat bands
that appear in TBG. As shown in figures 6(a)–(c), in a correl-
ated order which breaks the C2T symmetry, named α here, a
gap was opened at the Dirac points in K, resulting in a reor-
ganization of the spectral weight. In TBG without correlations
or external symmetry breaking, the lattice had C3 symmetry,
figure 6(f). Moreover, in a system with C3 symmetry σXiXj =
σYiYj . Here, Xi is the direction, as illustrated in figure 6(f).
Therefore, the optical conductivity along the four directions
(X1X1, X2X2, Y1Y1 and Y2Y2) were equal in the correlated
order, but different in the reported nematic state (named ηC3 ,
which lowers the rotational symmetry of TBG). Furthermore,
in the nematic state, when the flat band was partially filled, the
DOS was modified. With larger values of the amplitude of the
order parameter ηC3 , the Dirac points moved away from the
charge neutrality point and hole and electron Fermi pockets
were generated. Additional Fermi pockets appeared, leading
to new band crossings between the lower and upper flat bands
(figure 6(g)).
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Figure 7. Optical properties of other twisted 2D materials. (a1) Illustration of twisted bilayer hBN with incident circularly light. Reprinted
(figure) with permission from [196], Copyright (2020) by the American Physical Society. (a2) Real part of total (black lines) and chiral
(blue lines) optical conductivity. Reprinted with permission from [196]. Copyright (2021) American Chemical Society. (b2) Twist-angle
dependent cathodoluminescence (CL) intensity in (b1) twisted hBN multilayers. (b1) and (b2) Reprinted with permission from [197].
Copyright (2021) American Chemical Society. (c2) Anisotropic photoluminescence emissions in (c1) twisted monolayer/bilayer
phosphorene heterostructure with twist angle 19◦ comparing to monolayer (1 L) and bilayer phosphorence (2 L). (c1) and (c2) Reproduced
from [198]. CC BY 4.0.

On the theoretical side, we highlight the following works:
in [186], the authors used a continuum model to study the
frequency-dependent conductivity at different levels of chem-
ical potential. Moon and Koshino [115] performed both tight-
binding and continuum calculations of the optical conduct-
ivity, and analytically explained the optical selection rules
in terms of the symmetry of the effective Hamiltonian. In
addition, Stauber et al [121] calculated chemical potential
dependent Drude weight of the optical conductivity in TBG
by means of a continuum model. The excitonic effects,
for instance, electron–hole interactions [187], and the self-
consistent Hartree potential [188], were also investigated in
the optical spectra of TBG. It was found that in TBG under
strain [189], the peaks associated with transitions between the
flat bands in the optical conductivity were highly sensitive to
the direction of the strain. The effects of a magnetic field [190]
and magnetic impurities on the optical conductivity [191], as
well as optical activity in TBG have also been analyzed [192].
Analysis in stacking configurations [193, 194], quantum dots
and large twist angles (θ ⩾ 5◦) [195] reveals additional optical
properties.

4.2. Optical properties of other twisted 2D materials

Owing to the chiral symmetry, twisted bilayer hBN displays
circular dichroism, which has a different absorption of left and
right circularly polarized light [199]. This property can be
tuned by stacking and twisting [196]. The circular dichroism is
proportional to the ratio of chiral conductivity to the total con-
ductivity σ0 (shown in figure 7(a2)). The chiral response indic-
ated that twisted bilayer hBN had different absorption to left
and right-polarized light. Besides twisted bilayer hBN, twisted

hBN films have also attracted recent experimental research,
in particular Lee et al [197] found that both wavelength and
intensity of luminescence were tunable. These properties were
found to be enhanced with the twist angle between the hBN
interface layers increased, as seen in figure 7(b2). The origin of
this enhancement was that the moiré sub-band gap decreased
with twist angle. This experiment indicates that the moiré
potential is relevant in the moiré structures composed of bulk-
like materials .

On the other hand, moiré optical properties in twisted
semiconductors have also been investigated. For example,
in the anisotropic twisted monolayer/bilayer phosphorene
heterostructure, shown in figure 7(c1). The detected aniso-
tropic optical transitions were notably different from the
optical features of the corresponding monolayer and mul-
tilayer phosphorene [200, 201], even at a large angle like
19◦, as illustrated in figure 7(c2). The reason behind this
effect is that the moiré potential resulted in a strong hybrid-
ization between the twisted layers. Furthermore, the optical
moiré transitions were sensitive to the twist angle [198].
Additionally, the twisted heterostructure of anisotropic mater-
ials such as black phosphorus and orthorhombic molybdenum
trioxide can be used to control light polarization state [202].
Twisting large angles such as θ = 21.81◦ and θ = 32.22◦ can
also serve as a way to reduce interlayer interaction of bilayer
MoS2, which can induce a higher value of absorbance than
untwisted case [203].

4.3. Plasmons of TBG

TBG offers new degrees of freedom on tuning the electromag-
netic response, for example, the twist angle [187, 207, 208].
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Figure 8. Theoretical exploration of plasmons in twisted bilayer graphene. (a) Moiré structure of twisted bilayer graphene. The moiré
pattern contains AA, AB and BA high-symmetry stackings. Reproduced from [121]. CC BY 3.0. (b) Linear plasmon emerging in the loss
function intensity plot of magic-angle twisted bilayer graphene. Reproduced from [121]. CC BY 3.0. (c) Density plot of the loss function
showing quasi-flat plasmons in twisted bilayer graphene at 1.61◦. Reprinted with permission from [204]. Copyright (2016) American
Chemical Society. (d) Undamped plasmons in doped magic-angle twisted bilayer graphene. W is the width of the narrow bands. EF is the
Fermi energy. Reproduced with permission from [205]. (e) Dispersion-less and low-damped plasmon appearing in the loss function
spectrum of undoped magic-angle TBG at temperature T = 1 K. Reprinted (figure) with permission from [120], Copyright (2021) by the
American Physical Society. (f) Chiral plasmon response in twisted bilayer graphene. Reprinted (figure) with permission from [206],
Copyright (2017) by the American Physical Society.

Plasmons are collective charge oscillations that lead to
nanoscale optical fields. One of the pioneer works was that
of Stauber et al [121] who theoretically investigated the
plasmonic spectrum of TBG via a continuum model. They
found that the TBG interlayer coupling gave rise to a finite
Drude weight, even in the undoped case. This allowed for
the existence of plasmons that was weakly Landau-damped
due to the quasi-localized nature of the interband transition
states. As shown in figure 8(b), acoustic interband plasmon
modes appeared at zero chemical potential and changed to
conventional

√
q modes with non-zero doping levels in the

first magic-angle (1.05◦) TBG [121]. Moreover, plasmon
modes in TBG were dependent on both twist angle and the
chemical potential. Interestingly, quasi-flat plasmon modes
and renormalized Fermi velocity (approached zero) were pre-
dicted in TBG even for twist angles (∼1.61◦) larger than the
magic angle, as seen in figure 8(c). These collective excita-
tions were explained as oscillation of localized states around
the AA regions (see figure 8(a)) [204]. Moreover, intrinsically
undamped and quasi-flat plasmon modes were discovered in
doped magic-angle graphene, as depicted in figure 8(d) [205].
Conversely, at zero doping, including the effects of atomic
relaxation, low-damped and damped plasmons were observed
to emerge in the magic-angle configuration [120]. A further
theoretical study found that in the long wavelength limit, the
plasmon energy could be independent of doping level, but can
be tuned by the bias voltage in magic-angle TBG [209]. These

findings distinguish the TBG system from the 2D electron gas
(2DEG) that has a traditional

√
q plasmon dispersion with

energy dependent on charge density [210]. Moreover, other
unusual plasmon features such as plasmonic Dirac cone and
plasmon non-reciprocity, were discovered in biased magic-
angle TBG [211–214]. In addition, a further design of a TBG
device as in figure 8(f), allowed to excite chiral longitud-
inal plasmonic modes with different phases. Additional chiral
responses and plasmon edge states were exploited and were
found to enhance the electromagnetic near-fields chirality in
TBG [215–217]. Furthermore, theoretical studies explored
how plasmon in TBG were influenced by electron–electron
interaction [188, 218], finite size of TBG [219], and magnetic
field [220].

Experimentally, the plasmon wavelength and damping rate
were investigated by infrared s-SNOM with an excitation
energy of 0.11 eV [221]. It was found that TBGwith decreased
twist angles leaded to the decrease of the plasmon wavelength,
shown in figure 9(b), reflecting a renormalization of the Fermi
velocity of the Dirac fermions at different twist angles. A
reduced Fermi velocity is attributed to the enhanced inter-
layer interaction at twist angles, giving rise to a relaxation
of the plasmon wavelength. However, the plasmon damping
rate was found to be smaller with larger twist angles, as seen
in figure 9(c), likely due to stronger charge scattering rates
[221]. On the other hand, the propagation of plasmon polari-
tons was studied by infrared nano-imaging in TBG [101]. A
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Figure 9. Experimental investigation of plasmons in twisted bilayer graphene. (a) Illustration of the nanoinfrared imaging experiment using
s-SNOM in TBG using laser energy of E = 0.11 eV. (b) Plasmon wavelength of TBG versus twist angles. The insets plots the normalized
Fermi velocity of TBG at different interlayer coupling energy t. (c) Plasmon damping rate at different twist angles. The blue arrows in (b)
and (c) mark the value of plasmon wavelength and damping rate in single layer graphene, respectively. Reprinted (figure) with permission
from [221], Copyright (2017) by the American Physical Society.

linear-like plasmon mode (that is, the dispersion of a plasmon
mode is closely linear) of 1.35◦ TBG was observed by Hesp
et al [98]. The plasmon mode had an energy around 220 meV,
due to interband collective excitations whose spectrum was
reproduced with a continuum model with reduced AA tunnel
coupling.

In addition, chiral plasmons, the surface electromagnetic
waves showing non-reciprocal propagation, in TBG were
experimentally reported in [222]. They are achieved due
to the uncompensated Berry flux of the electron gas under
optical pumping. They were found to be characterized by two
peaks appearing in the extinction spectra. These low-energy
plasmon modes arose from interband transition with broken
time-reversal and inversion symmetry. In the experiment, a
plasmonic mode whose group velocity approaching to zero
(termed slow plasmon modes) was identified around 0.4 eV,
which stemmed from interband transition between subbands
in lattice-relaxed AB domains [222], compared to theoretic-
ally predicted quasi-flat plasmon mode generated in the AA
regions [204]. These slow plasmon modes could couple to
light and form slow surface plasmon polaritons, which also
provide potential for constructing optical metamaterials [223].

4.4. Plasmons of twisted multilayer graphene

Flat band and Dirac bands are found to coexist in twisted tri-
layer graphene with mirror symmetry [51, 54]. This coex-
istence may allow the plasmons to have different properties
from those in TBG. Theoretically, Wu et al [224] numerically
investigated plasmons in twisted trilayer graphene with differ-
ent twist angles and vertical pressures. In particular, for a twist
angle of 1.35◦, the defined magic angle at which Fermi velo-
city is zero in this system, a clear quasi-flat plasmon mode
emerged below 0.05 eV, as seen in figure 10(a). This plas-
mon was found to be originated from collective excitations
inside the flat bands. As shown in figure 10(c), for large twist
angles and no pressure, the quasi-flat plasmonmode had a blue
shift to an energy of 0.06 eV indicating the presence of wider
bands near charge neutrality. By applying a vertical pressure,

the plasmon mode reappeared, indicating an enhancement of
the interlayer coupling with pressure.

On the other hand, numerical studies found that long
lived, flat intraband and interband plasmons can exist in
TDBG [225]. In particular, it was found that a flat intra-
band plasmon modes emerged at long momentum because of
the influence of higher interband transitions. Furthermore, as
shown in figures 10(d)–(f) these plasmon modes were found
to be tuned by a vertical electric field, twist angle and doping,
respectively. Gapped interband plasmon and intraband plas-
mon appeared at small and large electric field, respectively,
and they persisted over a wide range of twist angles.

4.5. Plasmons of twisted bilayer TMDCs

Inmoiré TMDCs, the existence of flat bands also provides pos-
sibility to explore quasi-flat plasmon modes. A recent numer-
ical study [226] suggested that both atomic relaxation and
high energy bands have an impact on the low energy flat-band
plasmon in twisted bilayer MoS2, shown in figure 11. In par-
ticular, for an unrelaxed system, shown in figures 11(b1) and
(c1), a flat intraband and linear interband plasmon modes were
found. The distinct results between the different approxima-
tions suggested that the interband transitions play an important
role in the unrelaxed system. However, the relaxation effects
transformed the two plasmon modes to one mode with

√
q

dispersion as seen in figures 11(b1) and (c2). Further ana-
lysis concluded that the isolation of the flat band shown in
figure 11(d1) was the key to obtain quasi-flat plasmon modes
in twisted bilayer TMDCs, and the high-energy interband
transitions had impact on plasmons at a large momentum limit
[226]. In addition to the twist angle effect on plasmons in twis-
ted bilayer MoS2, a recent experiment also showed that film
thickness ratio of bilayers could manipulate plasmon topology
in twisted WTe2 films [227]. Single-layer MoS2 could provide
multi-component plasmons since it features spin and valley as
two extra degree of freedom [228], which could be used to
engineer the plasmon properties in twisted bilayer TMDCs in
future studies.
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Figure 10. (a) Loss function intensity plots in the magic-angle 1.35◦ twisted trilayer graphene; Reprinted (figure) with permission from
[224], Copyright (2021) by the American Physical Society. (b) and (c) pressure engineering plasmon modes in 1.89◦ twisted trilayer
graphene. (b) and (c) Reprinted (figure) with permission from [224], Copyright (2021) by the American Physical Society. Twisted double
bilayer graphene intraband and interband plasmons as a function of: (d) electric bias, (e) twist angle, and (f) doping level. (d)–(f) Reprinted
(figure) with permission from [225], Copyright (2022) by the American Physical Society.

Figure 11. Loss function intensity plots of twisted bilayer MoS2 with (first row) and without (second row) atomic relaxation. (a) Only one
band, the flat band included in equation (6), while (b) 40 band near the flat band included and (c) full band of tight-binding model with
TBPM as equation (7). Particle-hole (p)–(h) continuum region is marked with ‘p-h continuum’ and boundaries with green solid lines. (d)
The band structure of 3.5◦ twisted bilayer MoS2 without lattice relaxation (d1) and within (d2). Reprinted (figure) with permission from
[226], Copyright (2022) by the American Physical Society.
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Figure 12. Many-body effects. (a) Observed optical response peak in correlated ABC trilayer graphene-hBN moiré structure. From [229].
Reprinted with permission from AAAS. The photocurrent peak corresponds to the optical transition crossing the Mott gap between lower
Hubbard band (LHB) and upper Hubbard band (UHB), as illustrated by the solid arrow in the left inset. (b) Optical conductivity in TBG
with correlated effect (nematic order, red and blue lines) and without correlated effect (black line). ηC3 is the magnitude of the nematic order.
Reproduced from [185]. CC BY 4.0. (c) Plasmon spectrum of TBG within different many-body effect. Reproduced from [230]. CC BY 4.0.

5. Relation with other properties

5.1. Many-body effects

Many-body effects can provide a significant effect on optical
properties and plasmons of moiré structures. For example,
optical spectroscopy was employed to probe correlations in
ABC rhombohedral trilayer graphene with hBN (ABC-hBN)
[229]. In this work, an optical absorption peak emerged at
~18 meV, indicating a direct optical excitation across an
emerging Mott insulator, as shown in figure 12(a). A sim-
ilar optical spectra was observed at different fillings. The
optical response was found to be a useful tool to characterize
the onsite Coulomb repulsion energy, U, in the correspond-
ing Hubbard model. On the other hand, optical conductivity
was also theoretically used to reveal the nature of correlated
states in TBG [185]. Comparing to the optical excitation that
a Drude peak emerged at charge neutrality in non-correlated
models, new absorption peaks appeared in the optical spec-
trum for different values of correlated nematic order paramet-
ers ηC3 , see figure 12(b). Additional calculations in the same
system showed that the optical conductivity can be used to
distinguish different symmetry broken states. The plasmons
can also be used to probe many body effects as discussed

in section 4.1. Recently, Papaj and Lewandowski [230] pro-
posed to probe correlated states with plasmons in twisted het-
erobilayer TMDCs, where a folded plasmon spectrum can be
a signature of correlated states, as shown in figure 12(c). Here,
the plasmon spectra has different characteristics depending on
the type of correlated effects.

5.2. Non-linear optical response

The nonlinear optical response in TBG, also referred to as
optotwistronics [232] or twistoptics [233], has attracted atten-
tion only recently. Theoretical works have explored the impact
of light on the TBG band structure. In particular, a Floquet
band engineering has been investigated by means of tight-
binding models [234, 235]. Due to the extensive number of
sites in the TBG moiré unit cell, the continuum model has
proven to be highly valuable for studying optically induced flat
bands [236], the manipulation of interlayer couplings [237],
and the formulation of effective Floquet Hamiltonians [238].

As mentioned in the previous section, the TBG transition
energies are notably influenced by the twist angle [239,
240]. Consequently, for a constant twist angle, the activ-
ation or deactivation of one- and two-photon resonances
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Figure 13. Photogalvanic effect in low angle TBG (θ = 0.6◦). (Left side) Schematics of a TBG sample encapsulated by hBN. (Right side)
An incident terahertz radiation gives rise to a photovoltage. Reprinted with permission from [231]. Copyright (2020) American Chemical
Society.

can be achieved by adjusting the incident wavelength. This
characteristic allows for a highly adaptable second harmonic
generation in TBG [241, 242]. Remarkably, at larger twist
angles (∼21.79◦) and in the presence of intense laser fields,
TBG has been found to display high-harmonic generation, that
by symmetry grounds cannot occur in monolayer or bilayer
graphene [232, 243]. The selection rules described in [232]
under circularly polarized light stem from the underlying lat-
tice symmetry of TBG at large angles.

On the other hand, at low twist angles (∼1.05◦) there
is an interplay between twist, band geometry and optical
response [243]. There is an emergence of dynamical sym-
metries coupled with the standard symmetries of the TBG lat-
tice (C2y and C3) which are not present at large twist angles
(∼21.79◦) . Additional selection rules for the current response
are obtained at the low angle regime. In particular, an induced
inversion symmetry breaking [244] in the bilayer system
allows for a non-zero finite Berry curvature which enhances
the non-linearity. Interestingly, as described in [243] the high
order harmonics were found strongly dependent on the mag-
nitude of the band geometry through the Berry curvature.
The photogalvanic effect, which is the lowest order non-linear
effect, was predicted [231, 245] and then experimentally
observed in low-angle (∼0.6◦) samples of TBG [231], see
figure 13. At higher orders, a third order optical non-linearity
was also reported [246], where the non-linear response was
found to be considerably modified depending on the rotation
angle in TBG. Effects of the band topology [247], high har-
monic generation [248], correlated insulating states [249]
have also been investigated. In addition to TBG, non-linear
optical response can be achieved in large-angle (∼50◦) twis-
ted multilayer WS2 [250]. It is worthy to mention that via a
second harmonic generation in heterostructures of graphene-
hBN a transition from a commensurate to a non-commensurate
state was detected [251].

5.3. Superconductivity

The origin of superconductivity in moiré twisted graphene lay-
ers remains a subject of debate [12, 257]. In addition to the
proposed phonon-mediated theory [258, 259], purely elec-
tronic mechanisms such as the Kohn–Luttinger (KL) mechan-
ism and plasmon-mediated superconductivity have also been
examined [253, 255, 256]. This is motivated by the signific-
ant influence of electron–electron interactions found in magic-
angle TBG [15, 18]. For instance, theoretical studies of the
dielectric function within the RPA, cf equation (10), reveal
that the screenedCoulomb potential calculated near themagic-
angle TBG displays attractive regions in real space [253, 254,
260], see figure 14(a), indicating that superconductivity could
be induced by pure electron–electron interactions [261, 262]
through a KL mechanism [253, 263]. The RPA calculations
with frequency-independent polarization function show that
the superconducting instability can appear near VHS and pre-
cedes a spin-density-wave instability under KL mechanism,
as shown in figure 14(b). Furthermore, the critical temperat-
ure has also been predicted based on the KL mechanism by
calculating the static screened dielectric function and the gap
equation [262]. However, it is worth noting that the predicted
critical temperature is not as high as what has been observed in
experiments, as indicated by the gray dots in figure 14(c). This
suggests that phonons may also contribute to the enhancement
of the superconducting pairing [254].

On the other hand, as depicted in figure 14(d), the intrinsic
plasmon mode in magic-angle TBG is estimated to lead to an
even higher critical temperature (Tc) than the effects of phon-
ons under a massless Dirac model. Further numerical calcula-
tions reveal that the dynamical Coulomb-driven Tc can reach
approximately 15 K and varies with the electron density of
TBG near the magic angle, as shown in figure 14(e). Further
research delves into how the LFE plays a role in cooperative
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Figure 14. (a) Attractive electron–electron interaction in magic-angle twisted bilayer graphene. Reprinted (figure) with permission from
[252], Copyright (2019) by the American Physical Society. (b) Purely electron–electron induced superconductor phase in magic-angle
twisted bilayer graphene. Reprinted (figure) with permission from [253], Copyright (2019) by the American Physical Society. (c)
Superconductivity critical temperature explained by electron–electron screening potential with (red dots) and without phonon effect (gray
dots). Reproduced with permission from [254]. (d) Plasmon paring driven by dynamic Coulomb interaction comparing to Phonon paring
and (e) critical temperature of plasmon-mediated superconductivity in TBG at different angles. (d) and (e) Reproduced from [255].
CC BY 4.0. (f) Phonon (Ph) and plasmon (Pl) mediated superconductivity in magic-angle TBG without (0G) and within (1G) local field
effect. Reprinted (figure) with permission from [256], Copyright (2021) by the American Physical Society.

effects between plasmons and phonons on superconductivity
[256]. As illustrated in figure 14(f), plasmon-mediated super-
conductivity appears to be insensitive to LFE, which aligns
with previous findings indicating that plasmons in TBG are not
significantly affected by LFE [204, 205]. Recently, extrinsic
screening effects on superconductivity were investigated in
TBG as well, showing that the critical temperature was unaf-
fected by screening unless the screening layer was lower
than three nanometers from the superconductor [264]. Besides
LFE, effect of vertex corrections on plasmon-mediated super-
conductivity in moiré structures could deserve some attentions
[265], while vertex corrections could be safely dropped in con-
ventional high-density superconductors according to Migdal’s
theorem [266, 267].

6. Summary and outlook

This paper reviews recent theoretical and experimental
research on optical properties and plasmons in widespread
non-twisted and twisted moiré structures. For non-twisted
moiré graphene-based structures, the moiré potential plays a
key role in producing saddle points in the miniband struc-
ture of graphene, which gives rise to new optical interband
transitions between VHS which are ultimately reflected in the
experimental optical conductivity and interband plasmons. In
particular, particle-hole asymmetric features in optical con-
ductivity and plasmons emerged due to moiré potential break-
ing the symmetry of electronic wavefunction in graphene-hBN

structure. The moiré-induced interband plasmons and intrinsic
intraband plasmon can coexist in graphene-based non-twisted
moiré heterostructures. In twisted moiré structures, changing
the twist angle results in varying moiré lengths, leading to a
reshaping of the band structure and alterations in both band-
width and band velocity. In most studies on TBG, the optical
absorption peaks and plasmon wavelengths exhibit a red shift
as the twist angle decreases. Additionally, interband plasmons,
low-damped, and slow plasmon modes have been theoretic-
ally explored in flat-band TBG and confirmed by experiments.
These findings have spurred further investigations into plas-
monics in flat-band twisted trilayer graphene, double bilayer
graphene, and twisted TMD systems. Twisting is also recog-
nized as a means to modulate the optical response in other
twisted 2D moiré systems that also exhibit intriguing optical
phenomena. In flat-band moiré structures, electron–electron
interactions can also have an impact on the optical response.
Some studies have focused on understanding the effects of
these interactions through optical dynamics and plasmonics.
Additionally, the formation of superconducting electron pairs
through plasmon and electron–electron interactions under the
random phase approximation provides insights into the mech-
anisms underlying superconductivity in moiré structures.

Prosperous and tremendous theoretical and experimental
studies on moiré structures are still ongoing to open new
avenues for physics and potential applications. Twist-angle
induced moiré potentials are appearing in other structures,
such as moiré of moiré graphene layers [268–270], TBG-
hBN heterostructure [271–274], TBG-TMDC heterostructure
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[27], twisted three-dimensional systems [275–277], and so on.
Beyond aforementioned non-twisted moiré heterostructures,
studies of MoS2-metal moiré systems [278], and non-twisted
TMDC bilayer moiré heterostructures such as MoTe2/WSe2
are also arising [279, 280]. These moiré structures could also
be ideal platforms for exploring interesting linear and non-
linear optical properties as well as plasmonics. For example,
spin–orbit coupling accompanying with the moiré potentials
could cause more optical transitions in TBG-TMDC systems;
the hBN induced band gap could change the plasmon energy
in TBG-hBNmoiré structures. In addition, the twist-angle and
electron–electron interaction effect can also be important in
aligned graphene-based heterostructures in prospective stud-
ies. Disorder effects, such as twist-angle and strain effects,
have shown an impact on electronic and transport proper-
ties in moiré structures [281–285]. More studies of disorder
effects on optical properties ofmoiré structures are also needed
in future. Last but not least, although the optical and plas-
monic applications of moiré structures are not the primary
focus of this topic review they deserve further investigation
and attention.

Finally, by creating moiré patterns and further tuning
them as needed (e.g. by adjusting the twist angle, combin-
ing different materials, and applying artificial structure poten-
tials [286]), we can obtain control over the manipulation of
light in future state-of-the-art technologies. This control may
find applications in moiré photonics and moiré optoelectron-
ics, including lasers, detectors, modulators, infrared/terahertz
photoresponses, and polarizers. Exploring and gaining a fun-
damental understanding of how the moiré potential influences
the optoelectronic properties of these materials is, therefore,
crucial for the advancement of the field.
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