
Chinese Physics Letters
     

EXPRESS LETTER

A Time-Dependent Random State Approach for
Large-Scale Density Functional Calculations
To cite this article: Weiqing Zhou and Shengjun Yuan 2023 Chinese Phys. Lett. 40 027101

 

View the article online for updates and enhancements.

You may also like
Generating a state t-design by diagonal
quantum circuits
Yoshifumi Nakata, Masato Koashi and Mio
Murao

-

Characterizing Superradiant Phase of the
Quantum Rabi Model
Yun-Tong Yang,  , Hong-Gang Luo et al.

-

Finite-Size Scaling Theory at a Self-Dual
Quantum Critical Point
Long Zhang,  , Chengxiang Ding et al.

-

This content was downloaded from IP address 202.114.78.135 on 08/02/2023 at 02:50

https://doi.org/10.1088/0256-307X/40/2/027101
/article/10.1088/1367-2630/16/5/053043
/article/10.1088/1367-2630/16/5/053043
/article/10.1088/1367-2630/16/5/053043
/article/10.1088/1367-2630/16/5/053043
/article/10.1088/0256-307X/40/2/020502
/article/10.1088/0256-307X/40/2/020502
/article/10.1088/0256-307X/40/1/010501
/article/10.1088/0256-307X/40/1/010501


Chinese Physics Letters 40, 027101 (2023) Express Letter

A Time-Dependent Random State Approach for Large-Scale Density Functional
Calculations

Weiqing Zhou(周巍青) and Shengjun Yuan(袁声军)*

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education

and School of Physics and Technology, Wuhan University, Wuhan 430072, China

(Received 17 December 2022; accepted manuscript online 17 January 2023)

We develop a self-consistent first-principle method based on the density functional theory. Physical quantities

such as the density of states, Fermi energy and electron density are obtained using a time-dependent random

state method without diagonalization. The numerical error for calculating either global or local variables always

scales as 1/
√
𝑆𝑁e, where 𝑁e is the number of electrons and 𝑆 is the number of random states, leading to a

sublinear computational cost with the system size. In the limit of large systems, one random state could be

enough to achieve reasonable accuracy. The accuracy and scaling properties of using the method are derived

analytically and verified numerically in different condensed matter systems. Our time-dependent random state

approach provides a powerful strategy for large-scale density functional calculations.
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First-principles calculation using the density functional

theory (DFT) is one of the most powerful computational

methods for multi-electron systems and contributes exten-

sively to physics, chemistry, and materials science. DFT

theorems prove that there is a one-to-one mapping between

the ground-state wave function and the ground-state elec-

tron density. [1] In the mid 1960s, Kohn and Sham showed

that the finding of the ground-state density could be deter-

mined by a set of single-electron equations (Kohn–Sham

equations), [2] which is also known as the KS-DFT. How-

ever, the KS-DFT suffers from a size limitation caused

by diagonalization, in which the computational cost ex-

hibits a cubic scaling with the system size. Although

many efforts, such as iterative diagonalization schemes, [3]

preconditioned conjugate-gradient minimizations, [4–6] and

the Car-Parrinello method, [7] have been taken to improve-

ment of the scaling behavior for a relatively small system,

it is still hard to handle systems of more than a few hun-

dreds or thousands of atoms.

This size limitation has stimulated the development of

linear-scaling DFT. [8–21] The first attempt can be traced

back to the ‘divide-and-conquer’ method of Yang. [11] In

1992, Baroni and Giannozzi also proposed an algorithm

that determines the electron density directly by using

Green’s function. [12] In 1993, the density-matrix min-

imization approach was proposed by Li, Numes, and

Vanderbilt. [13] Following these strategies, many linear-

scaling DFT codes have been developed. [10,15–20] The

Chebyshev filter method is another successful attempt to

reduce the size of the effective dimension of Hilbert space,

but there are other non-linear factors dominated in large

systems. [22] A linear-scaling algorithm using atomic or-

bitals (LCAO) basis sets [14] can be applied to suitable sys-

tems with clearly separated occupied and empty states. [21]

Furthermore, the orbital-free DFT (OF-DFT) [23,24] is a

linear-scaling approach that avoids complete diagonaliza-

tion, but the kinetic energy density functionals have not

yet reached a good accuracy for many elements. [25,26] Re-

cently, a linear-scaled DFT is realized by using a stochastic

technique in a trace formula, [9,27–30] in which the statisti-

cal error of calculating a global variable, such as the total

energy (per electron), is reduced by the sample average

from different random orbitals. For local quantities, such

as the electron density, many stochastic samples are re-

quired to reach a reasonable accuracy.

In this Letter, we develop a self-consistent first-

principle calculation method based on the DFT without

any diagonalization of the Hamiltonian matrix. The phys-

ical quantities such as density of states (DOS), Fermi en-

ergy and real-space distribution of electron density are cal-

culated using the so-called time-dependent random state

(TDRS) method. We show that the numerical error of a

global or local variable always scales as 1/
√
𝑆𝑁e, where

𝑁e is the number of electrons and 𝑆 is the number of ran-

dom states. It leads to an overall sublinear scaling of the

computational costs, and one needs fewer random states

for larger systems. The method becomes extremely power-

ful for massive quantum systems, and a calculation using

one random state is enough to achieve reasonable accuracy

when 𝑁e → ∞. Our time-dependent random-states DFT

(rsDFT) originates from the real-space TDRS method de-

veloped in the tight-binding calculations, with an exten-

sion from globe variables (such as density of states, [31]

electronic and optical conductivities, [32] polarization and

screening functions, [33] etc.), to a local variable of electron

density. It is a general strategy for the local variable cal-

culations and can be applied in the tight-binding model or

other physical models as well.

Density of States and Fermi Energy. In the KS-

DFT, the Fermi energy is determined by counting the

number of occupied eigenstates, which are obtained from

the diagonalization of the Hamiltonian. In the rsDFT,
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the Fermi energy is extracted by the integration of the

DOS, which is calculated with the TDRS method without

diagonalization: [31,34]

𝐷(𝜀) =
1

2𝜋

∫︁ ∞

−∞
𝑒𝑖𝜀𝑡⟨𝜙|𝑒−𝑖𝐻𝑡|𝜙⟩𝑑𝑡, (1)

where |𝜙⟩ =
∑︀

𝑖 𝑐𝑖|𝑟𝑖⟩ is a random state in the real space,

and {𝑐𝑖} represents normalized random complex numbers.

The state |𝜙⟩ is also a random superposition state in the

energy space and can be expressed as |𝜙⟩ =
∑︀

𝑛 𝑏𝑛|𝐸𝑛⟩
with 𝑏𝑛 =

∑︀
𝑖 𝑐𝑖𝑎

*
𝑖 (𝐸𝑛), 𝑎𝑖(𝐸𝑛) = ⟨ri|𝐸𝑛⟩. Thus, Eq. (1)

becomes

𝐷(𝜀) =

𝑁∑︁
𝑛=1

|𝑏𝑛|2𝛿(𝜀− 𝐸𝑛), (2)

where 𝑁 is the dimension of the Hamiltonian. For a large

but finite 𝑁 , |𝑏𝑛| → 1/
√
𝑁 , the error of using 𝐷(𝜀) to ap-

proximate the DOS vanish with 1/
√
𝑁 . [31,34] As we nor-

mally use the same grid density, the dimension of the

Hamiltonian 𝑁 , determined by the number of grids, is lin-

early proportional to the number of atoms and the number

of electrons. Thus the numerical error of calculating 𝐷(𝜀)

scales also with 1/
√
𝑁e. The Fermi energy 𝜇 is determined

by 𝑁e =
∫︀ 𝜇

−∞ 𝐷(𝜀)𝑑𝜀. In the case that 𝑁e is not enough

to provide a desired accuracy, additional average of 𝐷(𝜀)

from different random states (|𝜙𝑝⟩ =
∑︀

𝑖 𝑐𝑖,𝑝|𝑟𝑖⟩, where

𝑝 = 1, 2, . . . , 𝑆) can be introduced to reduce the statisti-

cal error. Then, according to the central limit theory, the

overall error of calculating 𝐷(𝜀) scales as 1/
√
𝑆𝑁e.

[31,34]

Numerically, the time-evolution operator 𝑒−𝑖𝐻𝑡 can be de-

composed using the Chebyshev polynomial method as dis-

cussed in Refs. [31,34], which is unconditionally stable and

leads to a linear scaling on the system size as the Hamilto-

nian𝐻 is a spare matrix in the DFT. The energy resolution

is determined by 1/𝑁𝑡𝜏 , where 𝑁𝑡 is the number of time

steps and 𝜏 is the time interval 𝑑𝑡.

As a numerical check, we calculated the DOS of

graphite nanocrystals and fullerene with a different num-

ber of carbon atoms. Here, the Kohn–Sham Hamiltonian

is constructed with a given initial electron density 𝜌(𝑟) as

𝐻 = −∇2

2
+ 𝑉ext[𝜌(𝑟)] + 𝑉H[𝜌(𝑟)] + 𝑉xc[𝜌(𝑟)], (3)

where −∇2/2 is the kinetic energy, 𝑉ext is the external

potential, 𝑉H is the Hartree potential, and 𝑉xc is the ex-

change and correlation potential. The kinetic energy in

the KS-Hamiltonian [Eq. (3)] is approximated by using the

higher-order finite-difference expansion for the Laplacian

operator in a uniform real-space grid. [35,36] The Hartree

potential 𝑉H is derived by solving the Poisson equation. [36]

For exchange and correlation potential 𝑉xc, we use the lo-

cal density approximation. [37] The full ionic potential 𝑉ext

is effectively replaced by pseudo-potential in Kleinman–

Bylander forms. [38]
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Fig. 1. (a) The DOS of a graphite nanocrystal with 42 atoms, calculated by exact diagonalization or using the
TDRS method averaged with a different number (𝑆) of random samples. (b) The DOS of a graphite nanocrystal
with 11440 atoms was calculated using the TDRS method without random sample averaging. The different colors
represent different initial random states. (c) The standard deviations (SD) of 𝜇 and 𝐸occ(𝜇) for graphite nanocrystals
with different size (𝑁e), obtained from the statistical analysis of results from 500 individual random states. (d) The
error of 𝐸occ(𝜇), with respect to the exact diagonalization, as a function of the number of random states (𝑆) used
in TDRS for fullerenes C60 and C540. Here, each point in (d) is averaged from 100 groups of 𝑆 random states.

In Fig. 1(a), we plot the DOS of a graphite nanocrystal

with 42 carbon atoms, showing that the TDRS results with

more random samples match better to the value from the

diagonalization. For large graphite nanocrystals, such as

the one with 11440 atoms shown in Fig. 1(b), the TDRS

results obtained from two individual random states are
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quite close to each other. As a quantitative measurement

of the statistical error, the standard deviations (SDs) of re-

sults using only one random state are collected in Fig. 1(c).

Here, in each case we considered 500 different random

states and plotted the SDs of 𝜇 and 𝐸occ(𝜇) for graphite

nanocrystals with different sizes, where 𝐸occ(𝜇) is the oc-

cupied energy defined as 𝐸occ(𝜇) =
∫︀ 𝜇

−∞ 𝜀𝐷(𝜀)𝑑𝜀. It is

clear that the SDs of 𝜇 and 𝐸occ(𝜇) reduce significantly

when there are more electrons, and approach to zero with

an error scales as 1/
√
𝑁e. This indicates that for very large

systems, it is unnecessary to have additional averages with

different random states, and thus using one random initial

state is enough to provide a converged result in TDRS. On

the other hand, for finite systems such as the fullerenes C60

and C540 shown in Fig. 1(d), the accuracy of using TDRS

can be improved by the average using more random states

and the result converges to the exact value (from diag-

onalization) with an error scale as 1/
√
𝑆. In total, our

numerical results prove that the statistical error of using

the TDRS method to calculate DOS or related variables

scales as 1/
√
𝑆𝑁e, just as we expected (also see the error

analysis of DOS in the Supplementary Materials).

Electron Density. In the KS-DFT, the electron den-

sity is constructed by the superposition of occupied KS

orbitals |𝐸𝑛⟩, namely 𝜌(𝑟) =
∑︀

𝑛 𝑓(𝐸𝑛)||𝐸𝑛(𝑟)⟩|2, where
𝑓 is the Fermi–Dirac function. In the rsDFT, the knowl-

edge of |𝐸𝑛⟩ is absent as we do not perform any diagonal-

ization, but 𝜌(𝑟) will be obtained in a different way. In

the basis of real-space grid, {|𝑟𝑖⟩}, the wave functions of

KS orbitals can be expressed as |𝐸𝑛⟩ =
∑︀𝑁

𝑖=1 𝑎𝑖(𝐸𝑛)|𝑟𝑖⟩,
where 𝑁 is the total number of grid points, i.e., the di-

mension of the Hamiltonian. We consider a random state

|𝜙⟩ in the real space, as the one used in Eq. (1), which

is also a random superposition state in the energy space.

Thus, a superposition of all occupied states, with a given

Fermi energy 𝜇 and temperature 𝑇 , can be constructed

by applying a Fermi–Dirac (FD) filter on the random

state as |𝜙⟩FD ≡
√︀

𝑓(𝐻)|𝜙⟩ =
∑︀

𝑏𝑛
√︀

𝑓(𝐸𝑛)|𝐸𝑛⟩, where
𝑓(𝐻) = 1/(𝑒(𝐻−𝜇)/𝑘B𝑇 + 1) is the Fermi–Dirac operator.

The intensity of state vector |𝜙⟩FD at grid 𝑟𝑗 can be ex-

pressed as

‖𝜙⟩FD(𝑟𝑗)|2 =
∑︁
𝑛

|𝑏𝑛|2𝑓(𝐸𝑛)|𝑎𝑗(𝐸𝑛)|2

+
∑︁
𝑚 ̸=𝑛

𝑏*𝑚𝑏𝑛𝑓
1
2 (𝐸𝑚)𝑓

1
2 (𝐸𝑛)𝑎

*
𝑗 (𝐸𝑚)𝑎𝑗(𝐸𝑛). (4)

As we see in the calculation of DOS, for a large but finite

𝑁 , |𝑏𝑛| → 1/
√
𝑁 , [39] thus the first term in Eq. (4) con-

verges to 𝜌(𝑟𝑗)/𝑁 , where 𝜌(𝑟𝑗) =
∑︀

𝑛 𝑓(𝐸𝑛)|𝑎𝑗(𝐸𝑛)|2 is

exactly the electron density at grid 𝑟𝑗 . However, the value

of this term is of the order of 𝑂(𝑁e/𝑁
2), which is about 𝑁e

times smaller than the second term ∼ 𝑂(𝑁2
e /𝑁

2). This

means that the second term in Eq. (4) becomes dominant

when increasing the system size. To approximate 𝜌(𝑟𝑗) by

using ‖𝜙⟩FD(𝑟𝑗)|2, one needs to reduce the second term sig-

nificantly. This can be realized by using a time-dependent

approach in the following way.

Introduce the electron density 𝜌RS(𝑟) using a time-

dependent RS approach as

𝜌RS(𝑟𝑗) ≡
𝑁

2𝜋

∫︁ ∞

−∞
|𝑒−𝑖𝐻𝑡|𝜙⟩FD(𝑟𝑗)|2𝑑𝑡, (5)

and one can prove that 𝜌RS(𝑟) converges to 𝜌(𝑟) in the

limit of 𝑁 → ∞. Defining 𝛿𝜌 ≡
∑︀

𝑗 |𝜌RS(𝑟𝑗) − 𝜌(𝑟𝑗)|/𝑁e

as a measurement error of electron density and using the

property
∫︀∞
−∞ 𝑒−𝑖(𝐸𝑛−𝐸𝑚)𝑡𝑑𝑡 = 2𝜋𝛿(𝐸𝑛 − 𝐸𝑚), we have

𝛿𝜌 =
1

𝑁e

∑︁
𝑗

⃒⃒⃒∑︁
𝑛

(𝑁 |𝑏𝑛|2 − 1)𝑓(𝐸𝑛)|𝑎𝑗(𝐸𝑛)|2

+ 2𝜋𝑁
∑︁
𝑚 ̸=𝑛

𝑏*𝑚𝑏𝑛𝑓
1
2 (𝐸𝑚)𝑓

1
2 (𝐸𝑛)𝑎

*
𝑗 (𝐸𝑚)𝑎𝑗(𝐸𝑛)𝛿

· (𝐸𝑛 − 𝐸𝑚)
⃒⃒⃒
. (6)

For a large but finite 𝑁 , |𝑏𝑛| → 1/
√
𝑁 , both terms in

Eq. (6) converge to zero, but the statistical errors of the

first and second terms are 𝑂(1/
√
𝑁) and 𝑂(1/𝑁), respec-

tively. This indicates that in the limit of 𝑁 → ∞, 𝜌RS(𝑟)

converges to 𝜌(𝑟), and 𝛿𝜌 is dominated by the first term

and reduces to zero with a statistical error ∼ 𝑂(1/
√
𝑁).

The accuracy of using Eq. (5) to obtain the electron

density can be further improved by averaging 𝜌RS(𝑟) from

different initial random states. Similar to the calcula-

tion of DOS, consider a set of random states |𝜙𝑝⟩ =∑︀
𝑖 𝑐𝑖,𝑝|𝑟𝑖⟩, according to the central limit theorem, for

a large but finite 𝑆,
∑︀𝑆

𝑝=1 𝑐𝑖,𝑝𝑐𝑖′,𝑝/𝑆 = 𝐸(|𝑐|2)𝛿𝑖,𝑖′ +

𝑂(1/
√
𝑆), [34] where 𝐸(|𝑐|2) ∼ 1/𝑁 is the expectation

value of |𝑐𝑖|2. As 𝑏𝑛 =
∑︀𝑁

𝑖=1 𝑐𝑖𝑎
*
𝑖 (𝐸𝑛), using the nor-

malization property
∑︀𝑁

𝑖=1 |𝑎𝑖(𝐸𝑛)|2 = 1 and the orthogo-

nal property
∑︀𝑁

𝑖=1 𝑎𝑖(𝐸𝑛)𝑎
*
𝑖 (𝐸𝑚) = 0 for 𝑛 ̸= 𝑚, we have∑︀

𝑝 𝑏
*
𝑚,𝑝𝑏𝑛,𝑝/𝑆 = 𝛿𝑚,𝑛/𝑁+𝑂(1/

√
𝑆). Thus, together with

extra random states average, 𝜌RS(𝑟) is an accurate ap-

proximation of 𝜌(𝑟) with a statistical error 𝛿𝜌 scales as

1/
√
𝑆𝑁e. This scaling behavior is indeed the same as the

calculations of DOS given in Eq. (1).

Here, the time-evolution operator 𝑒−𝑖𝐻𝑡 and the

Fermi–Dirac filter
√︀

𝑓(𝐻) are carried out numerically us-

ing the Chebyshev polynomials, [31] which is very efficient

and accurate for sparse matrix 𝐻 as we discussed in the

part of DOS. In the Chebyshev decomposition of the

Fermi–Dirac filter, the temperature must be finite, and we

use 𝑇 = 10𝐾 in all the calculations. The method intro-

duced here becomes more efficient at high temperatures,

in which the ground state calculations also involve many

states above the Fermi energy due to a nonzero occupation

probability given by the Fermi–Dirac distribution. In the

following, we show several examples and check the accu-

racy of obtaining electron density using the TDRS method

introduced in Eq. (5).

We first consider fullerene with different numbers of

carbon atoms and calculate the charge density for a given

Hamiltonian using either the TDRS method or the stan-

dard diagonalization. In Fig. 2(a), we plot the statistical

error 𝛿𝜌 as a function of the number of time steps 𝑁𝑡 for

C20, C60, C180, C240, and C540, where the reference charge

density 𝜌 in each case is the one obtained from the di-

agonalization. We see that in all cases, 𝛿𝜌 drops rapidly

when introducing the time evolution, and for a given evolu-

tion period (the same 𝑁𝑡), 𝛿𝜌 is always smaller in a larger

sample. In Fig. 2(b), we plot the minimum value of 𝛿𝜌
as a function of the number of electrons 𝑁e in the limit

of 𝑁𝑡 → ∞. It shows clearly that 𝛿𝜌 scales exactly as

𝑂(1/
√
𝑁e), as same as we predicted from Eq. (6). The
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error bars are the standard deviations of electron den-

sity obtained from each individual random initial state,

i.e., without any random sample averaging. In practice,

it might be numerically expensive to perform a very long

evolution, and thus one needs to consider using only finite

or relatively small 𝑁𝑡. Thus we plot in Fig. 2(c) the similar

results to Fig. 2(b) but with finite 𝑁𝑡. We see that: (1)

in the absence of the time-dependent approach (𝑁𝑡 = 0),

the value of 𝛿𝜌 keeps the same amplitude, independent of

the system size; (2) when the time evolution is introduced,

the value of 𝛿𝜌 starts to decrease when increasing the size

of the sample (𝑁e). In Fig. 2(d), we consider the influ-

ence of sample average on the statistical error by plotting

the value of 𝛿𝜌 as a function of sample number 𝑆. Here

the reference charge density is the one obtained from C60

with exact diagonalization, and we see that the scaling of

the error follows 1/
√
𝑆, for both cases with or without the

time-dependent approach. The results presented in Fig. 2

verified numerically that the statistical error of calculat-

ing the charge density using the TDRS method scales as

1/
√
𝑆𝑁e, with the same scaling behavior as the calculation

of DOS.
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Fig. 2. (a) The statistical error 𝛿𝜌 as a function of the
evolution time 𝑁𝑡 for C20, C60, C180, C240 and C540,
where 𝜌Ref is the charge density obtained from diagonal-
ization. The time step is 𝜏 = 64𝜋 and the number of
random samples 𝑆 = 20. (b) The values of 𝛿𝜌 in (a) in the
limit of 𝑁𝑡 → ∞, plotted as a function of 𝑁e. The error
bars indicate the corresponding standard deviations. (c)
The same as (b) but with finite 𝑁𝑡, where the reference
charge density is the mean value averaged from 20 random
samples with 𝑁𝑡 = 144. 𝑁𝑡 = 0 means no time-dependent
approach is involved in calculating charge density. (d) The
value of 𝛿𝜌, plotted as a function of sample number 𝑆 for
C60, without or with time-dependent approach (𝜏 = 64𝜋).

Self-Consistent Iteration. Now, we consider the de-

tailed self-consistent iterations in the rsDFT. Here, the

numerical results obtained from the widely used commer-

cial KS-DFT package VASP (Vienna ab initio simulation

package) [40] are also presented as references.

In Fig. 3(a), we show the ground state DOS of C60 cal-

culated using the rsDFT, standard KS-DFT (with diago-

nalization) and VASP, respectively. Pulay mix is adopted

in the iteration to optimize the input density and acceler-

ate the convergence. [41] In the rsDFT, we use 10 random

samples in DOS calculations and 36 random samples with

𝑁𝑡 = 36, 𝜏 = 64𝜋 in electron density calculations. The

DOS values obtained from different approaches agree well

with each other, indicating that (1) our DFT code based

on diagonalization correctly reproduces the ground state

from VASP, (2) the newly proposed rsDFT provides ac-

curate results as these can be obtained from the standard

KS-DFT and the diagonalization can be completely ruled

out in the entire iteration process. In Fig. 3(b), we present

more results of converged rsDFT calculations of fullerenes

with different sizes, and show the total energy difference

compared with the result from diagonalization in each it-

eration step. In general, the convergence to the ground

state is more difficult in the larger system in the KS-DFT,

requiring more iteration steps to reach the same accuracy

for the total energy. In the rsDFT, however, the accu-

racy is increased automatically in larger systems due to

the 1/
√
𝑆𝑁e dependence of the statistical error, as shown

clearly in converge of the total energy during the iterations

in Fig. 3(b).
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Fig. 3. (a) For C60, the eigenvalue distributions of the
ground state calculated by using the VASP, diagonaliza-
tion and rsDFT, respectively. (b) The convergence of the
total energy during the iteration for C20, C60, and C240.
Here the total energy of the ground state (𝐸GS) is ob-
tained from diagonalization.

Scaling Behavior. Lastly, we check the scaling be-

havior of the rsDFT. The non-diagonal elements of KS-

Hamiltonian are from the kinetic energy and non-local

pseudopotentials in Eq. (3), leading to a highly sparse

Hamiltonian matrix due to the locality. The number of

the nonzero elements in the matrix scales linearly with

the number of atoms in the system. In the rsDFT,

the basic and dominant calculations are the multiplica-

tions between the Hamiltonian matrix and a state vec-

tor, in which the number of operations scales linearly with

the nonzero elements in the matrix. Therefore, the to-

tal computational load (CPU time) and memory cost of

the rsDFT are linearly dependent on the dimension of

the Hamiltonian, which is proportional to the number

of atoms in the system. These linear-scaling behaviors

are verified using graphite crystal, with up to 11440 car-

bon atoms (45760 electrons) in Figs. 4(a) and 4(b). As

benchmark tests, we perform complete ground state cal-

culations of graphite with 5040 and 11440 carbon atoms,

respectively. The difference of input and output electron

densities (𝛥𝜌 ≡
∑︀

𝑖 |𝜌out(𝑟𝑖) − 𝜌in(𝑟𝑖)|/𝑁) as a function

of iterative steps is plotted in Figs. 4(c) and 4(d). In all
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cases, we used the same calculation parameters, such as the

same real-space grid density, and the same accuracy for the

Chebyshev decompositions of the time-evolution operator

and the Fermi–Dirac filter. One should notice that, for

11440 carbon atoms, the total memory cost is only 16GB.

Due to the linear-scaling behavior, a self-consistent calcu-

lation of millions of atoms should be possible for computer

clusters with Terabytes (TB) memory.
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Fig. 4. [(a), (b)] The cost of memory and CPU time in the rsDFT for A-B stacked graphite with different numbers
of carbon atoms. The black and red curves in (a) are the total memory cost and the memory used to store the
sparse Hamiltonian matrix. The black, red and blue curves in (b) correspond to the time cost of one iteration for
the calculations of DOS, Fermi–Dirac filter and time-evolution averaging, respectively. [(c), (d)] The difference of
input and output electron density as a function of iteration steps for A-B stacked graphite with 5040 and 11440
atoms, respectively. The insets indicate the converged ground state density.

Conclusion and Discussion. We developed a sublinear-

scaled self-consistent first-principle calculation method,

i.e., the rsDFT. We use a TDRS method to calculate

the density of states and determine the Fermi energy. A

Fermi–Dirac filter on a random state and, subsequently,

a wave propagation according to the time-dependent

Schrödinger equation are introduced to approximate the

spatial distribution of the electron density. The accuracy

can be improved by the average using different initial ran-

dom states. The overall numerical error of either a global

quantity or a local variable scales as 1/
√
𝑆𝑁e, where 𝑁e

is the number of electrons and 𝑆 is the number of random

states. It leads to an overall sublinear scaling of the com-

putational costs, as for larger systems, one needs fewer ran-

dom states for the sample average. The method becomes

extremely powerful when 𝑁e → ∞, and a calculation using

one random state is enough to achieve reasonable accuracy.

In the recently developed stochastic DFT

(sDFT), [9,27–30] the physical quantities, such as the Fermi

energy and electron density, are calculated using the trace

formula of the stochastic technique without diagonaliza-

tion, i.e., the trace of a variable is approximated by the

average of its expectation values in stochastic orbitals.

One of the main differences between rsDFT and sDFT

is that all the variables in the rsDFT are obtained in a

more deterministic way based on numerical solutions of

the time-dependent Schrödinger equation, which is ab-

sent in the sDFT. In particular, the dominant noise in

the electron density induced by occupied states after the

Fermi–Dirac filter is dramatically reduced by the time-

dependent approach in the rsDFT. A large number of

stochastic orbitals (random samples) is required to reduce

the statistical error of the electron density in the sDFT. To

keep the same accuracy of calculating the local variables

such as electron density, one cannot use fewer stochastic

orbitals for larger systems, even in the limit of 𝑁e → ∞.

In our earlier works, we have developed a so-called

tight-binding propagation method (TBPM) for large-

scale modelling of complex quantum systems. A di-

rect extension of TBPM in the rsDFT is straightfor-

ward. For example, by using the TDRS-based method

without diagonalization, one can calculate the electronic

and optical conductivities, [42,43] polarization and screen-

ing functions, [32,44] diffusion coefficient and localization

length, [33,44] quasieigenstate, [45] and many other applica-

tions as implemented in our homemade simulation pack-

age, TBPLaS. [46] The main advantage of the rsDFT and

the other time-dependent methods mentioned above is

that there is no diagonalization of the Hamiltonian matrix

in the whole process, and the errors of these calculated

variables all scale as 1/
√
𝑆𝑁e, leading to an overall sublin-

ear scaling on the computational costs. Furthermore, the

atomic force can be calculated the same way as the tra-

ditional DFT or OF-DFT by using the formulation based

on the electron density in real space. [47–50] It is also pos-

sible to extract the atomic force using the wave function

of approximated ground states, which will be discussed

in future work. The rsDFT provides a new possibility to
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study large-scale systems from the first-principle calcula-

tions and can be used widely in physics, chemistry, biology

and material science, with possible extension to large-scale

TD-DFT and GW calculations.
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