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Understanding how symmetries encode optical polarization information into selection rules in molecules
and materials is important for their optoelectronic applications including spectroscopic analysis, display
technology, and quantum computation. Here, we extend polarization-dependent selection rules from atoms
to solid-state systems with various point groups with the help of the rotational operator for circular
polarization and the twofold rotational operator (or reflection operator) for linear polarization. We use these
new selection rules to study the optical properties of twisted bilayer graphene quantum dots (TBGQDs),
which inherit advantages of graphene quantum dot including its ultrathin thickness, excellent biocompat-
ibility, and shape- and size-tunable optical absorption or emission. We study how the electronic structures
and optical properties of TBGQDs rely on size, shape, twist angle, and correlation effects for TBGQDs with
10 different point groups for which we obtain an optical selection rule database. We show how current
operator matrix elements identify the generalized polarization-dependent selection rules. Our results
show that both the electronic and optical band gaps follow power-law size scalings with a dominant role
of the twist angle. We derive an atlas of optical conductivity spectra for both size and twist angle in
TBGQDs. As a result of quantum confinement effects, in the atlas a new type of optical conductivity
features emerges with multiple discrete absorption frequencies ranging from infrared to ultraviolet
energy, allowing for applications in photovoltaic devices and photodetectors. The atlas and size scaling
provide a full structure–symmetry-function interrelation and hence offer an excellent basis for the
geometrical manipulation of optical properties of TBGQDs as building blocks for novel integrated
carbon optoelectronics.
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I. INTRODUCTION

Optical polarization, i.e., the oscillating direction of the
electric field, can be generated, controlled, and detected by
means of the light-matter interaction, yielding various
polarization-dependent phenomena, such as birefringence,
dichroism, optical activity, Kerr effect, etc. As such,

optical polarization effects are important for widespread
applications including photodetectors [1], laser and dis-
play technologies, spectroscopic analysis [2], and quantum
computation [3,4]. Optical selection rules specify possible
transitions between energy levels via absorption or emis-
sion of electromagnetic radiation in various systems
ranging from atoms to molecules and solids. These rules
are essentially strict constraints resulting from both system
symmetries and conservation laws, and hence are of vital
importance for understanding the optical spectrum and for
determining the system’s symmetries and electronic prop-
erties. Besides the constraint from the angular momentum
conservation, the selection rules of both circularly and
linearly polarized light for hydrogen atoms in electric
dipole approximation are described by the magnetic
quantum number changes Δm ¼ �1 and Δm ¼ 0 [5],
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respectively. For the past several years, it has also been
indicated that, as a result of constraints from lattice and
time-reversal symmetries, optical interband transitions for
left- and right-handed circular polarizations in some
special semiconductors can display quite different behav-
iors. In addition, polarization-dependent selection rules are
deeply tied to the internal quantum degrees of freedom of
Bloch electrons, such as the spin and valley contrasting
optical selection rules for circularly polarized light in III-V
bulk crystals [6] and two-dimensional hexagonal semi-
conductors [7–11]. Recently, numerical calculations of the
current operator matrix elements in graphene quantum dots
(GQDs) have shown anomalous distribution patterns with
respect to the rotational symmetry operator [12] resulting
from the selection rule of polarized light. A natural
question is whether the spin and valley contrasting optical
selection rules in crystals and the anomalous optical
selection rules in quantum dots can be extended to a
uniform expression of polarization-dependent selection
rules. In addition, understanding how symmetries encode
the polarization of light into the selection rule is important
to analyze both polarization-dependent optical spectra and
symmetries of the electronic structure in solid materials,
which subsequently allow for their applications in opto-
electronics. Motivated by these examples, we generalize
and augment the following optical selection rules for both
linear and circular polarizations in molecules and solids by
a point group description. Our theory shows that the
selection rules of circularly polarized light are character-
ized by the changes in the rotational quantum number. The
selection rules of linearly polarized light in Dn, Dnh, Dnd,
and Cnv symmetric systems can also be correspondingly
characterized by a twofold rotational operator or reflection
operator of systems.
Compared with bulk semiconductors, quantum dots,

i.e., zero-dimensional nanocrystals, have remarkable size-
and shape-tunable energy levels and absorption or emis-
sion spectra due to quantum confinement effects [13,14],
enabling a wide range of optoelectronic devices [15–18],
such as displays, solar cells, and light-emitting diodes.
GQDs, i.e., graphene nanofragments, are ultrathin, have
excellent biocompatibility, can be easily functionalized,
show a good photostability, and have shape- and size-
controllable optical absorption as well as photolumines-
cence characteristics. GQDs hence hold high promises
for applications in optical sensing [19,20], bioimaging
[19–21], photovoltaics [22–24], photodetectors [25], and
light-emitting diodes [22–24]. Several synthetic strategies
are known to fabricate GQDs from a few nanometers to
several hundred nanometers [19–28]. Theoretical inves-
tigations based on tight-binding models clearly reveal that
the optical absorption of GQDs is modulated by the edge
type [29], size [30,31], shape [32], and electronic corre-
lation effects [31,33,34]. In addition, group theory analysis

shows that symmetries play a key role in optical selection
rules in GQDs [32,34].
Recently, twisted bilayer graphene has drawn consid-

erable attention in condensed matters owing to its exotic
electronic structure [35–38], emergent correlated effects
[39,40], and quasicrystalline order [41,42]. The optical
absorption properties of infinite-size twisted bilayer
graphene have been explored theoretically [43–46], based
on the pz-orbital based tight-binding model. The twist
angle dependence of optical absorptions in infinite
systems has also been experimentally investigated [47],
highlighting the absorption peaks from interband tran-
sitions between energy levels near the van Hove singu-
larities (i.e., logarithmic divergent singularity in the
density of states). It is thus natural to further ask how
the electronic structures and optical properties rely on
size, shape, twist angle, edge structure, and correlation
effects in twisted bilayer graphene quantum dots
(TBGQDs). The chiral optical properties including cir-
cular dichroism and optical activity are analyzed in
TBGQDs with a Dn point group symmetry (with
n ¼ 2, 3, 6) [48]. Plasmonic excitations are studied in
twisted bilayer supercells [49]. The radius-dependent
energy levels together with electron localizations [50],
valley-dependent scattering [51], and generic behavior of
energy bands at large twisting angles [52] are discussed in
potential-induced TBGQDs, which refer to twisted
bilayer graphene with a confining boundary in the form
of site-dependent staggered potentials (i.e., sublattice
asymmetry) [50,51] or combinations of staggered and
electrostatic potentials [52].
Here, we present an extensive study of various TBGQD

structures with 10 different point groups determined by
twist angles, geometrical centers, and edge restrictions.
Applying the orthogonality theorem, we derive the optical
selection rules for all these structures and show that
numerically calculated current operator matrix elements
follow these generalized polarization-dependent selection
rules. The electronic band gaps of these quantum dots
show a power-law size scaling with exponents ranging
from −2 to −1. As a consequence of the selection rules, the
optical conductivity spectra exhibit three remarkable
absorption characteristics: (i) a relatively strong absorption
occurs around 1.5t0 < ℏω < 2t0 (with t0 ¼ 2.8 eV),
which is associated with the interband transitions between
these energy levels near the van Hove singularities of
twisted bilayer graphene [43,47]; (ii) the optical band gap
scaling also follows a power law but with its power index
less than that of electronic band gap; and (iii) the finite-size
quantum confinement effect yields a new type of optical
conductivity features besides the previous three types of
conductivity peaks in infinite twisted bilayer graphene.
This new type of peaks with multiple discrete absorption
frequencies ranging from infrared to ultraviolet energy
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enables potential applications in photovoltaic devices and
photodetectors.

II. POLARIZATION-DEPENDENT
SELECTION RULES

The optical conductivity formula indicates that the
allowed transitions are determined by the nonzero matrix
elements of the current operator ĵα with α ¼ x, y, z, i.e.,

hψkjĵαjψ li ≠ 0; ð1Þ

where jψki and jψ li are eigenstates of the system. These
nonzero matrix elements can be identified using the
orthogonality theorem. The reducible representation of
ĵαjψ li is the direct product representation, Γĵα

⊗ Γl, which
is usually written as the direct sum form

P⊕
μ aμΓμ with aμ

counting how often the irreducible representation Γμ

appears. If the current operators ĵx, ĵy, and ĵz have different
irreducible representations, the selection rules for different
linearly polarized light are naturally distinguishable. From
point group character tables [53,54] we can conclude that
(i) except Ci and cubic point groups, all the other point
groups have different irreducible representations for z and
ðx; yÞ, and (ii) except the nonaxial group and D2, C2v, and
D2h point groups, all the other point groups have the same
irreducible representations for x and y, as listed in Table I.
The irreducible representation of ĵα is the same as that of α.
In addition, considering that many 2D materials and their
quantum dot structures have noncubic point group sym-
metry, we mainly aim for theoretical descriptions governing
the selection rules of polarized light for these point groups
with the same irreducible representations of ĵx and ĵy. In
this respect, we need to search for some symmetry
operators to differentiate ΓĵxðyÞ ⊗ Γl for linear polarization

and Γĵ� ⊗ Γl for right ðσþÞ and left ðσ−Þ circular polar-

izations with ĵ� ¼ ĵx � iĵy.

For circularly polarized light, we choose the rotational
symmetry operator ĈnðR̂2π=nÞ with an n-fold z axis such
that an arbitrary eigenstate jψ li of system with the same Γl
is distinguished by the eigenvalues (i.e., rotational quantum
number ϕl) of Ĉn, as follows:

Ĉnjψ li ¼ eði2π=nÞϕl jψ li; ð2Þ

with ϕl ¼ 0;…; n − 1. For an allowed transition k ↔ l, the
matrix elements of the current operator ĵ� for circular
polarizations take the form

hψkjĵ�jψ li ¼ eði2π=nÞðϕk−ϕlÞhψkjĈ†
nĵ�Ĉnjψ li: ð3Þ

In addition, ĵ� under the rotational transformation is
given by

Ĉ†
nĵ�Ĉn ¼ e�i2π=nĵ�: ð4Þ

Substituting Eq. (4) into Eq. (3) and using Eq. (1), we
obtain ϕk − ϕl � 1 ¼ np with an integer p. However, the
constraint of jϕk − ϕlj ≤ n − 1 for both left and right
circular polarizations requires p ¼ 0. Therefore, the selec-
tion rule of circularly polarized light reads

△ϕ ¼ ϕl − ϕk ¼ �1: ð5Þ

Equation (5) indicates that the changes of the rotational
quantum number characterize the absorption and emission
of circularly polarized light in systems with rotational
symmetry operator Ĉn. The selection rule in Eq. (5) is thus
not limited to quantum dots. From Eqs. (3)–(5), the
selection rules of circularly polarized light from the current
operator matrix element can also be written as
hψkjĵ�jψ li ¼ δϕl;ϕk�1hψkjĵ�jψ li, which agrees with the
result obtained from the dipole operator [55].
For linearly polarized light, we also need to find a

symmetry operator Ô to characterize its selection rule. The

TABLE I. Summary on irreducible representations for z, x, and y in point group character tables. The ✓ (✗) sign denotes the
distinguishable (indistinguishable) irreducible representations between z in the second row and ðx; yÞ in the third row, or between x and y
inside ðx; yÞ. ĈnðzÞ is the rotational operator, i.e., R̂2π=n. The symmetry operator Ô for linearly polarized light can be Ĉ2, Ĉ

0ð00Þ
2 , or σ̂vðdÞ,

with corresponding n inside curly braces. For instance, f3; 5g∶Ĉ2=σ̂v for Dnh represents Ô ¼ Ĉ2 or σ̂v for D3h and D5h point groups.

Nonaxial Cn Dn Cnv Cnh Dnh Dnd Sn Cubic C∞v D∞h

z Cs (✓)
C1ðiÞ (✗)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

ðx; yÞ ✗ D2 (✓)
others (✗)

C2v (✓)
others (✗)

✗ D2h (✓)
others (✗)

✗ ✗ ✗ ✗ ✗

ĈnðzÞ R̂2π=n R̂2π=n R̂2π=n R̂2π=n R̂2π=n R̂2π=n R̂2π=n R̂2π=n R̂2π=n

Ô f3; 5g∶Ĉ2

f4; 6g∶Ĉ0ð00Þ
2

f3; 5g∶σ̂v
f4; 6g∶σ̂vðdÞ

f3; 5g∶Ĉ2=σ̂v
f4; 6; 8g∶Ĉ0ð00Þ

2 =σ̂vðdÞ

f3; 5g∶Ĉ2=σ̂d
f2; 4; 6g∶Ĉ0

2=σ̂d

∞σ̂v ∞σ̂v∞Ĉ2
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operator Ô should satisfy two conditions: (i) ½Ĥ; Ô� ¼ 0

yielding Ôjψ ii ¼ γijψ ii with eigenvalue γi, and
(ii) Ô†ĵαÔ ¼ qαĵα with qx ≠ qy allowing to distinguish
ĵx and ĵy. For an allowed transition k ↔ l the matrix
elements of the current operator ĵα for linear polarizations
then read

hψkjĵαjψ li ¼ qαðγ�kÞ−1ðγlÞ−1hψkjĵαjψ li: ð6Þ

Substituting Eq. (1) into Eq. (6), we obtain

γ�kγl − qα ¼ 0: ð7Þ

Equation (7) characterizes the absorption and emission of
linearly polarized light under the basis functions of Ô. The
possible symmetry operators Ô for Dn, Cnv, Dnh, Dnd,
C∞v, andD∞h point groups are listed in Table I, where Ô is
absent for Cn, Cnh, and Sn point groups.
Now we turn back to examine the polarization-dependent

selection rules within the previously studied GQDs [12,32]
and two-dimensional hexagonal semiconductors [7–11]. As
an example we consider MoS2 monolayers with the D3h
point group symmetry. Its conduction and valence band
edges at the Kþ=− valleys are of dominant Mo dz2 and
fdx2−y2 ; dxyg orbital characters, respectively. The rotational
operator Ĉ3ðR̂2π=3Þ in the bases of ½dx2−y2 ; dxy; dz2 � has the
following representation:

Ĉ3½dx2−y2 ;dxy;dz2 � ¼ ½dx2−y2 ;dxy;dz2 �

2
664

−1
2

ffiffi
3

p
2

0

−
ffiffi
3

p
2

−1
2
0

0 0 1

3
775: ð8Þ

Using Eq. (8), we can classify band edges by the rotational
quantum number ϕl, i.e.,

dϕl¼0 ¼ dz2 ;

dϕl¼1 ¼
1ffiffiffi
2

p ðdx2−y2 þ idxyÞ;

dϕl¼2 ¼
1ffiffiffi
2

p ðdx2−y2 − idxyÞ: ð9Þ

On the other hand, we also need to consider the constraint
En;Kþ;s ≠ En;K−;s with energy E from the broken inversion
symmetry and the constraint En;Kþ;s ¼ En;K−;−s from the
time-reversal symmetry with the spin s. Therefore, dϕl¼1

and dϕl¼2 orbitals related by the time-reversal operation
must be located at Kþ and K−, respectively, as shown in
Fig. 1. The selection rule of circularly polarized light,
△ϕ ¼ �1 in Eq. (5), reflects the valley-resolved optical
absorption from the analysis of azimuthal quantum number
change of Mo atoms [9–11]. For GQDs with C3v and C6v
point group symmetries, our selection rules from Eq. (5)

directly indicate the transitions from ϕl to ϕl − 1 and ϕl þ
1 for the corresponding σþ and σ− circularly polarized
light, and hence agree well with previous numerical
calculations [12,32].

III. STRUCTURES OF TBGQDS

The combination of the twist degree of freedom,
geometrical center positions, and edge restrictions results
in a plethora of TBGQDs with various symmetries. Many
of them can be categorized into 10 different point groups
including D2h, D2, D3h, D3, C3v, D3d, D6h, D6, C6v, and
D6d, as shown in Fig. 2. These structures with 10 different
point group symmetries are generated following the
procedures in the Appendix A. Their structural properties
can be summarized as follows: (i) structures with Dnh

point group are actually the AA stacked bilayer GQDs
with a typical horizontal mirror plane, and structures with
D3d correspond to the AB stacked bilayer GQDs; (ii) geo-
metrical centers are in the hexagon center for structures
with other 7 point groups except D2, D2h, and D3d, where
the geometrical centers for D2 and D2h are at the middle
of bond and at an atom for D3d; (iii) the twist angles for
C3v, C6v, and D6d are π=6, and the twist angles for D3 and
D6 can change from 0 to π=6 if the geometrical center is at
the hexagon center and from 0 to π=3 if the geometrical
center is at an atom, as a result of the twist periodicity;
(iv) the x axes for D2h, D3h, and D6h can be fixed along
zigzag or armchair directions, and the x axes are chosen
along C2ðxÞ for D2 and D3, σvðxzÞ for C3v, D3h, and C6v,
σdðxzÞ for D3d and D6d, and C0

2ðxÞ for D6 and D6h.
All the irreducible representations, symmetry operators,

and x axes of TBGQDs for the 10 different point groups are
listed in Table S1 of Supplemental Material [56]. From this

FIG. 1. The selection rule of circularly polarized light in MoS2
monolayer. The conduction band bottom is mainly contributed by
dz2 orbital of Mo, and the top of valence band is mainly
contributed by fdx2−y2 ; dxyg orbitals of Mo. These band edges
with spin-up (dash lines) and spin-down (solid lines) are
classified by the rotational quantum number ϕl of Ĉ3 at Kþ
(left) and K− (right) valleys.
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table we can summarize the following relations between
these point groups.

(i) Dn and Cnv with n ¼ 3, 6 have the same irreducible
representations but slightly different symmetry ope-
rators, i.e., C2, C0

2, or C
00
2 in Dn, and σv or σd in Cnv,

(ii) Dnh ¼ Dn ⊗ Cs,
(iii) Dnd ¼ Dn ⊗ Ci.
Using the above relations we divide the 10 point groups

into three sets of point group symmetries, i.e., set
(1) fD2; D2hg, set (2) fD3; C3v; D3h; D3dg, and set
(3) fD6; C6v;D6h; D6dg. Considering their geometrical
edge profiles, we call sets (1) and (2) rectangular and
triangular systems, respectively, and we further divide the
set (3) into the hexagonal fD6; C6v; D6hg system and the
dodecagonal fD6dg system.

IV. SELECTION RULES OF 10 POINT GROUPS

We apply the orthogonality theorem to derive the
selection rules of the 10 point groups for TBGQDs. The
direct product Γĵα

⊗ Γμ for each irreducible representation
Γμ and the selection rules of the 10 point groups are
calculated and listed in Table II. From this table, we
observe the following characteristics.

(i) Dn and Cnv with n ¼ 3, 6 have the same selection
rules, and the allowed transitions include Ai ↔ E
and E ↔ E.

(ii) Because of Dnh ¼ Dn ⊗ Cs and Dnd ¼ Dn ⊗ Ci,
Dnh andDnd have close but different selection rules.

For instance, forD3h andD3d the transitions are still
only allowed between A and E states, or between E
and E states, but there exist differences such as
E0 ↔ E0 for D3h and Eg ↔ Eu for D3d.

(iii) For D2 and D2h, the selection rules for x and y
polarized light are intrinsically different.

V. OPTICAL SPECTRUM

We now check the selection rules using the optical
conductivity spectrum. The real part of optical conduc-
tivity corresponds to the interband absorption. The absorp-
tion peaks encode the information of the allowed
transitions and hence manifest the selection rules. As an
example, Fig. 3 shows the energy spectrum and optical
conductivity spectrum of a D6d point group structure with
N ¼ 300 atoms, where the Hamiltonian, irreducible rep-
resentations, and optical conductivity are obtained follow-
ing the approaches in Appendixes B, C, and D,
respectively. We use the nearest-neighbor hopping energy
t0 as the energy unit and determine the Fermi energy EF by
the half filling rule. We can see a series of absorption peaks
in Figs. 3(b) and 3(c) from infrared to ultraviolet frequen-
cies, such as peak 1, E1 → E2 at ℏω ¼ 0.255t0; peak 2,
E5 → E4 at ℏω ¼ 0.33t0; and peak 3, A1 → E1 at
ℏω ¼ 0.485t0. In addition, the optical conductivity is
obviously isotropic, i.e., σxx ¼ σyy. Although the band
gap with Eg ¼ 0.2t0 is determined by the energy difference
between the highest occupied state E1 and the lowest
unoccupied state E4 in Fig. 3(a), the transition E1 ↔ E4 is

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. Top views of TBGQDs with 10 different point group symmetries. Structures with Dnh have zero twist angle and hence the top
layer covers vertically the bottom layer from top view in (a), (c), and (g) owing to the horizontal reflection σh. The structure with D3d in
(f) has the AB stacked configuration. In the sketched Dn structures the twist angles are chosen as 10° for D2 in (b), 5° for D3 in (d), and
10° for D6 in (h). These structures with C3v in (e), C6v in (i), and D6d in (j) have the fixed twist angle of 30°. All the symmetry operator
elements and x axis for these 10 point groups are listed in Supplemental Material Table SI [56].
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TABLE II. Direct product Γjα ⊗ Γμ, selection rules, and symmetry operator Ô for TBGQDs. The 10 different point groups describe
the corresponding symmetries of these structures in Fig. 2. ForD2 andD2h, the selection rules for x and y polarized light are intrinsically
distinguishable owing to the different irreducible representations of x and y. Here, Ô†ĵαÔ ¼ qαĵα with α ¼ x, y, and Ô has been chosen
such that qx ¼ 1 and qy ¼ −1 for all point groups.

Point
groups Γjα ⊗ Γμ Selection rules Ô qx qy

D3 E ⊗ A1 ¼ E; E ⊗ A2 ¼ E
E ⊗ E ¼ A1 ⊕ A2 ⊕ E

A1 ↔ E; A2 ↔ E;E ↔ E Ĉ2ðxÞ þ1 −1

D3h E0 ⊗ A0
1 ¼ E0; E0 ⊗ A0

2 ¼ E0

E0 ⊗ A00
1 ¼ E00; E0 ⊗ A00

2 ¼ E00

E0 ⊗ E0 ¼ A0
1 ⊕ A0

2 ⊕ E0

E00 ⊗ E00 ¼ A00
1 ⊕ A00

2 ⊕ E00

A0
1 ↔ E0; A0

2 ↔ E0; E0 ↔ E0

A00
1 ↔ E00; A00

2 ↔ E00; E00 ↔ E00
σ̂vðxzÞ þ1 −1

C3v E ⊗ A1 ¼ E; E ⊗ A2 ¼ E
E ⊗ E ¼ A1 ⊕ A2 ⊕ E

A1 ↔ E; A2 ↔ E;E ↔ E σ̂vðxzÞ þ1 −1

D3d Eu ⊗ A1g ¼ Eu; Eu ⊗ A2g ¼ Eu

Eu ⊗ A1u ¼ Eg; Eu ⊗ A2u ¼ Eg

Eu ⊗ Eg ¼ A1u ⊕ A2u ⊕ Eu

Eu ⊗ Eu ¼ A1g ⊕ A2g ⊕ Eg

A1g ↔ Eu; A2g ↔ Eu

A1u ↔ Eg; A2u ↔ Eg; Eg ↔ Eu

σ̂dðxzÞ þ1 −1

D6 E1 ⊗ A1 ¼ E1; E1 ⊗ A2 ¼ E1

E1 ⊗ B1 ¼ E2; E1 ⊗ B2 ¼ E2

E1 ⊗ E1 ¼ A1 ⊕ A2 ⊕ E2

E1 ⊗ E2 ¼ B1 ⊕ B2 ⊕ E1

A1 ↔ E1; A2 ↔ E1

B1 ↔ E2; B2 ↔ E2; E1 ↔ E2

Ĉ0
2ðxÞ þ1 −1

D6h E1u ⊗ A1g ¼ E1u; E1u ⊗ A2g ¼ E1u

E1u ⊗ B1g ¼ E2u; E1u ⊗ B2g ¼ E2u

E1u ⊗ A1u ¼ E1g; E1u ⊗ A2u ¼ E1g

E1u ⊗ B1u ¼ E2g; E1u ⊗ B2u ¼ E2g

E1u ⊗ E1g ¼ A1u ⊕ A2u ⊕ E2u

E1u ⊗ E2g ¼ B1u ⊕ B2u ⊕ E1u

E1u ⊗ E1u ¼ A1g ⊕ A2g ⊕ E2g

E1u ⊗ E2u ¼ B1g ⊕ B2g ⊕ E1g

A1g ↔ E1u; A2g ↔ E1u

B1g ↔ E2u; B2g ↔ E2u

A1u ↔ E1g; A2u ↔ E1g

B1u ↔ E2g; B2u ↔ E2g

E1g ↔ E2u; E2g ↔ E1u

Ĉ0
2ðxÞ þ1 −1

C6v E1 ⊗ A1 ¼ E1; E1 ⊗ A2 ¼ E1

E1 ⊗ B1 ¼ E2; E1 ⊗ B2 ¼ E2

E1 ⊗ E1 ¼ A1 ⊕ A2 ⊕ E2

E1 ⊗ E2 ¼ B1 ⊕ B2 ⊕ E1

A1 ↔ E1; A2 ↔ E1

B1 ↔ E2; B2 ↔ E2; E1 ↔ E2

σ̂vðxzÞ þ1 −1

D6d E1 ⊗ A1 ¼ E1; E1 ⊗ A2 ¼ E1

E1 ⊗ B1 ¼ E5; E1 ⊗ B2 ¼ E5

E1 ⊗ E1 ¼ A1 ⊕ A2 ⊕ E2

E1 ⊗ E2 ¼ E1 ⊕ E3; E1 ⊗ E3 ¼ E2 ⊕ E4

E1 ⊗ E4 ¼ E3 ⊕ E5

E1 ⊗ E5 ¼ B1 ⊕ B2 ⊕ E4

A1 ↔ E1; A2 ↔ E1

B1 ↔ E5; B2 ↔ E5

E1 ↔ E2; E2 ↔ E3

E3 ↔ E4; E4 ↔ E5

σ̂dðxzÞ þ1 −1

D2 B3 ⊗ A ¼ B3; B3 ⊗ B1 ¼ B2

B3 ⊗ B2 ¼ B1; B3 ⊗ B3 ¼ A
B2 ⊗ A ¼ B2; B2 ⊗ B1 ¼ B3

B2 ⊗ B2 ¼ A; B2 ⊗ B3 ¼ B1

x∶
A ↔ B3; B1 ↔ B2

y∶
A ↔ B2; B1 ↔ B3

Ĉ2ðxÞ þ1 −1

D2h B3u ⊗ Ag ¼ B3u; B3u ⊗ B1g ¼ B2u

B3u ⊗ B2g ¼ B1u; B3u ⊗ B3g ¼ Au

B3u ⊗ Au ¼ B3g; B3u ⊗ B1u ¼ B2g

B3u ⊗ B2u ¼ B1g; B3u ⊗ B3u ¼ Ag

B2u ⊗ Ag ¼ B2u; B2u ⊗ B1g ¼ B3u

B2u ⊗ B2g ¼ Au; B2u ⊗ B3g ¼ B1u

B2u ⊗ Au ¼ B2g; B2u ⊗ B1u ¼ B3g

B2u ⊗ B2u ¼ Ag; B2u ⊗ B3u ¼ B1g

x∶
Ag ↔ B3u; B1g ↔ B2u

B2g ↔ B1u; B3g ↔ Au

y∶
Ag ↔ B2u; B1g ↔ B3u

B2g ↔ Au; B3g ↔ B1u

Ĉ2ðxÞ þ1 −1
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forbidden. These absorption peaks and forbidden transi-
tions are a result of the selection rules of D6d point group
as shown in Table II. The optical conductivity spectrum for
the other 9 point group structures are also calculated and
shown in Figs. S1–S3 of Supplemental Material [56] with
the corresponding absorption peaks following the selection
rules as well.

VI. MATRIX ELEMENTS OF
CURRENT OPERATORS

To further understand how the allowed transitions for
both linearly and circularly polarized light are identified by
the symmetry operators Ô and Ĉn, respectively, we first
classify the energy levels via γl of Ô and ϕl of Ĉn, as shown
in Fig. 4, where Ô ¼ σ̂dðxzÞ with the reflection plane xz
and Ĉn ¼ Ĉ6ðzÞ. As we can see, under the reflection
operator σ̂d in Fig. 4(b), the original energy levels in
Fig. 4(c) are divided into two columns of energy levels
denoted by γl ¼ 1 and γl ¼ −1 in Fig. 4(a). Under the
rotational operator Ĉ6ðzÞ in Fig. 4(d), the original energy
levels in Fig. 4(c) are separated into 6 columns of energy
levels denoted by ϕl ¼ 0, 1, 2, 3, 4, 5 in Fig. 4(e). For
linearly polarized light, ĵx and ĵy under the transformation

of σ̂d satisfy σ̂†dĵxσ̂d ¼ ĵx and σ̂†dĵyσ̂d ¼ −ĵy. This means
that qx ¼ 1 and qy ¼ −1. Therefore, the selection rules in
Eq. (7) require that γ�kγl − 1 ¼ 0 and γ�kγl þ 1 ¼ 0 for x and
y linearly polarized light, respectively. Consequently, the
calculated matrix elements of the current operators
hψkjĵxjψ li and hψkjĵyjψ li have off-diagonal and diagonal
patterns within the classified states of σ̂d, as illustrated in
Figs. 4(f) and 4(g). Similarly, for right and left circularly
polarized light, hψkjĵþjψ li and hψkjĵ−jψ li within the
classified states of Ĉ6ðzÞ correspondingly obey Δϕ ¼ 1
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FIG. 4. Energy spectra and matrix elements of current operators for aD6d TBGQD. Top view of theD6d structure withN ¼ 300 atoms
is shown in (b) and (d), where the xz reflection plane and the z axis are represented by the red dashed line and the middle red dot,
respectively. The pristine energy spectrum of the structure is plotted in (c). The classified energy spectra by γi of σ̂dðxzÞ are shown in (a).
The classified energy spectra by ϕi of Ĉ6ðzÞ are shown in (e). These energy levels from down to up are labeled by the increasing numbers
for each γi and ϕi. The square modulus of current operator matrix elements in unit of t20: jhψkjĵxjψ lij2 in (f) and jhψkjĵyjψ lij2 in (g) for
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sentations, where the inset shows the structure with N ¼ 300
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corresponding transitions in (a). The transition E1 ↔ E4 is
forbidden as a result of the selection rules in Table II.
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andΔϕ ¼ −1 in Eq. (5), as demonstrated in Figs. 4(h) and 4
(i). Since D2 and D2h have intrinsically anisotropic proper-
ties, we calculate these matrix elements of the current
operators for structures with the other 7 point group
symmetries and find similar results (see Figs. S4–S10 in
Supplemental Material [56]) governed by the polarization-
dependent selection rules in Eqs. (5) and (7).

VII. BAND GAP SCALING

The size dependence of the band gap is crucial for the
practical designing and engineering of TBGQDs-based
nanoelectronics. The area A of TBGQDs is written as
A ¼ NA0, where N is the total number of C atoms and
A0 ¼ 3

ffiffiffi
3

p
b20=4 is the average area per atom with b0 ¼

1.42 Å as the bond length. Because the length scale L can
be expressed by L ¼ ffiffiffiffiffiffiffiffi

A=2
p

∼ 0.1144
ffiffiffiffi
N

p
nm with the

factor 2 from two monolayers, the size (such as the edge
length or radius) of TBGQDs is proportional to

ffiffiffiffi
N

p
, and

hence it is reasonable to use
ffiffiffiffi
N

p
as the size index.

Figure 5 presents the band gap of TBGQDs as a function
of

ffiffiffiffi
N

p
, for D3h, D3ðθ ¼ 1.1°Þ, D3ðθ ¼ 5°Þ, D3ðθ ¼ 10°Þ,

D6h, D6ðθ ¼ 5°Þ, C6vðθ ¼ 30°Þ, D6dðθ ¼ 30°Þ, D2h, and
D2ðθ ¼ 1.1°Þ point groups. We first discuss the common
characteristic of the size-dependent band gap for these
structures. As we can see in Fig. 5, the band gap exhibits
firstly a rapid decay with respect to

ffiffiffiffi
N

p
from few hundreds

to several thousands of N, and then converges with a
possible oscillation toward zero because TBGQDs recover
the electronic spectrum of twisted bilayer graphene with
zero gap in the limit of large N. For usual semiconductor

quantum dots, the band gap follows 1=R2 power law with
the radius R [57]. For graphene ribbons, the scaling law
obeys approximately 1=W (i.e., 1=

ffiffiffiffi
N

p
) and 1=W2 (i.e.,

1=N) relations with the ribbon width W for zigzag and
armchair edges, respectively, because of their correspond-
ing linear and parabolic energy dispersions [58]. Therefore,
a power law of Eg=t0 ¼ að ffiffiffiffi

N
p Þb is adopted to fit the decay

of the band gap of TBGQDs. These fitted values of the
dimensionless numbers a and b are listed in Table III. All
the values of the power index b are almost inside ½−2;−1�,
because our TBGQDs are generally customized with a
random edge profile instead of pure zigzag or armchair
edges such that the band gap scaling behaves like a mixed
behavior of relativistic and nonrelativistic particles. In
twisted bilayer graphene with a circular mass potential
barrier, the band edge also exhibits a power-law scaling
with the barrier radius [50].
We also discuss the twist angle dependence of the band

gap scaling. For triangular systems in Figs. 5(a)–5(d), the
absolute value of the power index b starts with a number
close to 2 in D3h structures and D3 structures with a small
twist angle, and then has an obvious decrease with the
increasing angle [at 5° in Fig. 5(c)], and then increases back
to the value about 2 with the further growth of the twist
angle [at 10° in Fig. 5(d)]. A similar angle dependence of b
exists for hexagonal systems in Figs. 5(e)–5(g). The band
gap of the dodecagonal D6d system in Fig. 5(h) has a
very similar size dependence to that of the C6v system in
Fig. 5(g) owing to their similar structures. D2h and
D2ðθ ¼ 1.1°Þ rectangular systems in Figs. 5(i) and 5(j)
have slightly different values of b, but both values of jbj are
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FIG. 5. Band gap scaling law of TBGQDs. From (a) to (j), each inset as an example shows the structure of quantum dot with its point
group. Numerical results of Eg=t0 as a function of

ffiffiffiffi
N

p
are denoted by the blue circles, and the power-law fitting of Eg=t0 ¼ að ffiffiffiffi

N
p Þb is

plotted by the red line. All individual panels have the same labels of x and y axes, as labeled in (f). The fitted values of a and b are listed
in Table III. In (a) and (b), the vertical dashed lines are respectively at N ¼ 1440 and N ¼ 1632, where the band gap of the structures
vanishes.
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obviously less than those ofD3h andD6h, as a consequence
of the rectangular geometrical confinement.
In Fig. 5, our calculations only include the effective

kinetic energy in the Hamiltonian in Eq. (B1). We further
investigate the effects of local Coulomb interaction on the
band gap scaling of TBGQDs. An effective on-site
Coulomb repulsion U� (here labeled as U) is adopted to
capture the nonlocal Coulomb interactions [59]. The band
gaps as a function of

ffiffiffiffi
N

p
for TBGQDs with U ¼ 1.2t0

[59,60] and U ¼ 0.6t0 are calculated and plotted in
Figs. S11 and S12 in Supplemental Material [56], respec-
tively. The variations in U are used to mimic the external
environmental screening, e.g., U ¼ 0.6t0 from SiO2 sub-
strate with an effective dielectric constant κ� about 2 [61].
As a consequence of Coulomb interactions, edge magnetism
can emerge in some structures even with random edge
profiles. The ground states are determined by minimizing
the energy of ferromagnetic, antiferromagnetic, and non-
magnetic states. From the power-law fitting we obtain again
the dimensionless numbers a and b also listed in Table III
for comparison with the results underU ¼ 0. As we can see,
the local Coulomb interaction U has a weak influence on a
and b for the structures with a fixed point group. This means
that the effective tight-binding kinetic energy term of the
Hamiltonian in Eq. (B1) can approximately capture the
main scaling behaviors. Compared with the weak influence
of the Coulomb interaction, the twist angle has a remarkable
impact on the band gap scaling. Here we note that
(i) quantum dots with odd number of C atoms such as
C3v structures are not discussed because of their zero band
gap according to the half filling and (ii) small structures with
several tens of C atoms are not discussed here because of the
enhanced confinement effects, for which configuration
interaction methods [62] and quantum Monte Carlo simu-
lations [63] are alternative methods describing the correla-
tion phenomena.

VIII. OPTICAL SPECTRUM ATLAS AND
OPTICAL BAND GAP SCALING

Figure 6 shows an atlas of optical conductivity spectra as a
function of the size index

ffiffiffiffi
N

p
and the photon energy ℏω for

the same TBGQDs structures in each panel of Fig. 5. From
Fig. 6 we can see two remarkable absorption characteristics.
Firstly, at about 1.5t0 < ℏω < 2t0, there exists a relatively
strong absorption region which changes only slightly with
the system size for all structures (also see the line plots of the
optical conductivity in Supplemental Material Fig. S13
[56]). Such a stable absorption region is related to the
interband transitions between the energy levels near the
van Hove singularities [43] of the infinite-size twisted bilayer
graphene. Secondly, the forbidden absorption region below
the fitted black dashed line vanishes with the increasing
system size. Following the decay of the electronic band gap,
the optical band gap ðℏωgÞ thus also decreases with the
increasing system size. However, the fitting results in
Table IV from the power law of ℏωg=t0 ¼ cð ffiffiffiffi

N
p Þd show

that the dimensionless numbers c and d are different from a
and b of the electronic band gap. This arises from the
interband transitions between the highest occupied and
lowest unoccupied energy levels, which are only allowed
if their transitions obey the optical selection rules in Table II.
In addition, two further aspects areworth highlighting: (i) the
D2h and D2 point group structures exhibit an anisotropic
scaling behavior (see σyy in Supplemental Material Fig. S14
[56]), and (ii) the optical spectra of the D3h and D3 point
group structures in Figs. 6(a) and 6(b) show a piecewise
decay of the optical band gap as a result of the oscillating
behavior of the electronic band gap [cf. Figs. 5(a) and 5(b)],
with the vanishing band gaps at N ¼ 1440 and N ¼ 1632

(denoted by vertical dash lines), respectively. We plot the
atlas of optical conductivity spectra for U ¼ 0.6t0 and 1.2t0
in Supplemental Material Figs. S15 and S16 [56], respec-
tively, and we also list the fitting values of c and d in

TABLE III. Fitted values of dimensionless a and b for U ¼ 0, 0.6t0, and 1.2t0.

U ¼ 0 U ¼ 0.6t0 U ¼ 1.2t0

Point groups Twist angle (θ) a b a b a b

D3h 0° 54.889 −1.942 54.403 −1.926 53.652 −1.920
D3 1.1° 62.217 −1.980 61.911 −1.978 61.477 −1.975
D3 5° 14.894 −1.395 15.410 −1.408 15.651 −1.413
D3 10° 95.092 −2.103 96.872 −2.110 95.553 −2.104
D6h 0° 32.637 −1.879 32.640 −1.879 30.506 −1.851
D6 5° 3.500 −0.995 3.430 −0.988 3.429 −0.988
C6v 30° 52.096 −1.884 37.178 −1.749 19.987 −1.501
D6d 30° 55.373 −1.991 49.765 −1.947 23.831 −1.645
D2h 0° 4.832 −1.307 5.084 −1.329 7.142 −1.464
D2 1.1° 9.399 −1.595 7.805 −1.521 10.513 −1.644
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Table IV. As we can see, the effective Coulomb interaction
has only weak influences on both the optical conductivity
spectrum and the optical band gap scaling.

IX. STRUCTURE RELAXATIONS, EDGE ATOM
VACANCIES, AND TWIST ANGLE EFFECTS ON

OPTICAL SPECTRUM

We turn our focus now to the effects of structure
relaxations (see Appendix E) and edge atom vacancies
on the optical conductivity spectrum of TBGQDs. As
shown in Supplemental Material Fig. S17 [56], the struc-
ture relaxation yields only weak modifications to the
frequency and magnitude of the absorption features.

As an example, Fig. 7 shows the optical conductivity
spectrum of quantum dots withD2h,D2, C6v, andD6d point
groups and different vacancy defect densities ρ (i.e.,
percentage of missing edge atoms). With the increasing
ρ, the disorder is enhanced, and the original point group
symmetry is broken, which damps the absorption peaks.
Furthermore, we can see that (i) for low frequencies some
new absorption peaks appear, as indicated by the arrows in
Figs. 7(b)–7(d), and (ii) for high frequencies ð1.5 <
ℏω=t0 < 2Þ the optical absorption associated with the
van Hove singularity is only mildly affected.
Next, we evaluate the twist angle dependence of the

optical absorption spectrum of TBGQDs with slightly
variable N, which is inevitably induced in experiments due

TABLE IV. Fitted values of scaling indexes c and d for U ¼ 0, 0.6t0, and 1.2t0.

U ¼ 0 U ¼ 0.6t0 U ¼ 1.2t0

Point groups Twist angle (θ) c d c d c d

D3h 0° 16.477 −1.272 16.373 −1.270 16.373 −1.270
D3 1.1° 14.199 −1.221 14.529 −1.229 15.443 −1.254
D3 5° 14.699 −1.258 15.113 −1.268 15.063 −1.267
D3 10° 10.182 −1.142 10.630 −1.158 10.350 −1.147
D6h 0° 12.462 −1.247 12.462 −1.247 14.428 −1.314
D6 5° 5.385 −0.994 5.443 −0.987 5.443 −0.987
C6v 30° 57.320 −1.896 23.456 −1.545 15.717 −1.385
D6d 30° 36.626 −1.745 25.501 −1.599 12.850 −1.325
D2hðxÞ 0° 5.459 −1.022 5.459 −1.022 5.353 −1.015
D2hðyÞ 0° 1.728 −0.788 1.728 −0.788 1.727 −0.784
D2ðxÞ 1.1° 4.935 −1.021 4.516 −0.988 4.466 −0.980
D2ðyÞ 1.1° 1.901 −0.839 1.825 −0.820 1.524 −0.756

FIG. 6. Optical conductivity contour plots for U ¼ 0. The real part of optical conductivity σxx in unit of σ0 ¼ πe2=ð4ℏÞ is plotted as a
function of

ffiffiffiffi
N

p
and ℏω=t0 in (a)–(j) with the labeled point groups of TBGQDs. All individual panels have the same labels of x and y

axes, as labeled in (f), and the color bar for all panels is at the bottom right-hand corner. The black dashed line represents the power-law
fitting of ℏωg=t0 ¼ cð ffiffiffiffi

N
p Þd, with ωg as the frequency of the first main absorption peak. The fitted values of c and d are listed in

Table IV. In (a) and (b), the vertical dashed lines are respectively at N ¼ 1440 and N ¼ 1632, where the electronic band gap of the
structures vanishes.
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to the edge atom vacancies. We first consider a typically
triangular quantum dot with a hexagon center and the x
axis oriented along the armchair direction. The optical
conductivities of the structures with L ∼ 3.54 nm
(N ∼ 955) and L ∼ 8.03 nm (N ∼ 4925) are shown in
Fig. 8 as a function of the twist angle θ and the photon
energy ℏω. For a relatively small structure with N ∼ 955,
we find three absorption peaks inside about 0.2t0 <
ℏω < 0.7t0, i.e., in the infrared to visible frequency range,
which vary only slightly for θ > 10° [cf. Fig. 8(b)]. For
smaller angles θ < 10°, these peaks split into several
absorption regions, which shift with θ. For ℏω near
1.7t0 we see a broad absorption region, which can be
associated with the transitions between the energy levels
near the van Hove singularities. For a relatively large
structure with N ∼ 4925, we observe four groups of
characteristic conductivity peaks, as indicated in Fig. 8(c).
With the increasing twist angle, group (i) peaks shift
toward higher frequencies, group (ii) peaks shift toward
lower frequencies, and group (iii) peaks vary only slightly.
The three groups of absorption peaks are associated
with the van Hove singularity and behave similarly as
those in the infinite-size twisted bilayer graphene [43].
Additionally, there exist the fourth group (iv) peaks with
multiple discrete absorption frequencies ranging from
infrared to ultraviolet energy, which are nearly indepen-
dent of the twist angle above the angles of peaks (i). These
peaks are missing in the infinite systems and arise from the
multiple interband transitions between the discrete energy
levels induced by the quantum confinement effects in
finite-size systems. In addition, the group (iv) peaks also
exist in other structures (see hexagonal quantum dots in
Supplemental Material Fig. S18 [56]). Therefore, these
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FIG. 7. Edge atom vacancy effects on optical conductivity spectrum. The real parts of optical conductivity σxx (upper panel) and σyy
(lower panel) in unit of σ0 ¼ πe2=ð4ℏÞ are plotted as a function of ℏω=t0 with different vacancy densities ρ forD2h in (a),D2 in (b),D6h
in (c), and D6h in (d). The upper (lower) insets show the quantum dot structures without (with) random edge atom vacancies. Here,
N ¼ 4148, N ¼ 4264, N ¼ 4212, and N ¼ 4344 for these structures without vacancies in the upper insets from (a) to (d), respectively.

FIG. 8. Twist angle dependence of optical spectrum. (a) A
schematic structure of a triangular quantum dot with the
hexagon center and the fixed x axis along the armchair direction
before the rotation. The real parts of optical conductivities σxx
in unit of σ0 ¼ πe2=ð4ℏÞ are plotted as a function of the twist
angle θ and the photon energy ℏω=t0 in (b) with N ∼ 955 and in
(c) with N ∼ 4925.
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twist-angle-tunable and finite-size-induced optical absorp-
tions from infrared to visible and ultraviolet frequencies
allow for promising applications of TBGQDs in photo-
voltaic devices and photodetectors.
The twist angle dependence of group (i) peaks (called

EA therein) have been experimentally measured in
Ref. [47]. In Fig. 9 we compare these experimentally
measured EA with these theoretically obtained values for
the triangular TBGQDs with L ∼ 8.03 nm (t0 ¼ 2.8 eV
and U ¼ 0 eV). Our results capture the experimental
features in an acceptable range with a relative error less
than 0.1.

X. CONCLUSION

In conclusion, we derived polarization-dependent optical
selection rules for systems with point group symmetries.
The changes of the rotational quantum number characterize
the selection rules of circularly polarized light. The
eigenvalues of symmetry operator Ô (such as the twofold
rotational operator or reflection operator) characterize the
selection rules of linearly polarized light in Dn, Dnh, Dnd,
and Cnv systems. We have designed and classified various
TBGQDs into 10 different point group structures which are
experimentally feasible and derived an optical selection
rule database for all of these quantum dot structures. The
calculated current operator matrix elements identify our

polarization-dependent selection rules. We analyzed the
band gap scaling of TBGQDs and found that it follows a
power law with a power index inside ½−2;−1� and showed
that the twist degree of freedom has a remarkable impact on
the size scaling while we found only a weak influence of
local Coulomb interactions. We compiled an atlas of both
size-dependent and twist-angle-dependent optical spectra
of TBGQDs and showed that the optical band gap scaling
also follows a power law but with its power indices smaller
than those found for the electronic band gap as a result of
selection rules. We characterized three groups of optical
conductivity peaks in TBGQDs which also appear in
infinite twisted bilayer graphene. In addition, we predicted
a new group of peaks with multiple discrete absorption
frequencies ranging from infrared to ultraviolet energy as a
consequence of quantum confinement effects in finite-size
TBGQDs. These new peaks render TBGQDs highly
promising for applications in photovoltaic devices and
photodetectors. Our optical spectrum atlas and derived
selection rule database present a comprehensive structure–
symmetry-function interrelation and allow an excellent
geometrical control of optical properties for TBGQDs as
a building block in on-chip carbon optoelectronics [65,66].
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APPENDIX A: PROCEDURES FOR
GENERATING TBGQDs

The process involves two steps to generate TBGQDs.
Firstly, we define the lattice vectors for each layer and the
rotation center between the two layers such that we can
construct an infinite twisted bilayer graphene. The atom
sites in twisted bilayer graphene are described by

Rl;AðBÞ ¼ mlal;1 þ nlal;2 þ τl;AðBÞ; ðA1Þ

where layer indices l ¼ 1, 2 denote layer 1 and layer 2,
respectively, al;1 and al;2 are the basis vectors of each layer,
ml and nl are arbitrary integers, and τl;AðBÞ is the relative
vectors of sublattices A and B inside a unit cell for each
layer. For monolayer graphene before twist, if the armchair
edge is along the x axis, the basis vectors read
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FIG. 9. A comparison of EA=t0 between experiment (expt.) and
theory (theo.). The experimental energy positions of absorption
peaks EA at θ ¼ 9.8°, θ ¼ 16.9°, θ ¼ 20.7°, θ ¼ 23.1°, and
θ ¼ 27.2° are extracted from Fig. 3(a) in Ref. [47]. The
theoretical energy positions of EA at these twist angles very
close to the experimental values are calculated, including
θ ¼ 9.8°, θ ¼ 17.1°, θ ¼ 20.8°, θ ¼ 23.3°, and θ ¼ 27.5° (see
Supplemental Material Fig. S19 [56]). The inset shows the
relative error η ¼ jðEt

A=t
t
0Þ − ðEe

A=t
e
0Þj=ðEe

A=t
e
0Þ versus

θη ¼ ðθe þ θtÞ=2, where the experimental value of te0 in bilayer
graphene is measured as 3 eV in Ref. [64] and tt0 ¼ 2.8 eV, with e
and t denoting experiment and theory, respectively.
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a1 ¼
ffiffiffi
3

p
a

2
x̂ −

a
2
ŷ; a2 ¼

ffiffiffi
3

p
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2
x̂þ a

2
ŷ: ðA2Þ

If the zigzag edge is along the x axis, the basis vectors read

a1 ¼ ax̂þ 0ŷ; a2 ¼
a
2
x̂þ

ffiffiffi
3

p
a

2
ŷ: ðA3Þ

After a twist between the two monolayers with an angle θ,
we can write the basis vectors of layers 1 and 2 as a1;i ¼
R−θ=2 · ai and a2;i ¼ Rθ=2 · ai, with Rθ as the rotation
operation. The rotation geometrical centers can be at atom,
hexagon center, or bond center, where their relative vectors
of sublattices A and B are respectively given by

τl;A ¼ 0; τl;B ¼ 1

3
al;1 þ

1

3
al;2; ðA4Þ

τl;A ¼ 1

3
al;1 þ

1

3
al;2; τl;B ¼ 2

3
al;1 þ

2

3
al;2; ðA5Þ

τl;A ¼ −
1

6
al;1 −

1

6
al;2; τl;B ¼ 1

6
al;1 þ

1

6
al;2: ðA6Þ

In the second step, we cut the infinite twisted bilayer
graphene into nanoflakes by leaving the atoms only inside a
desired polygon and remove the edge atoms with two
dangling bonds to reduce defect states. We now show in
detail how to choose the rotation geometrical centers and
the relative vectors of sublattices to generate TBGQDs with
10 different point group symmetries, respectively.
For structures with point groupsDnh andDn (n ¼ 2, 3, 6),

the twist angles θ ¼ 0 and θ ≠ 0 are required, respectively.
For D2h and D2, we need to cut the infinite bilayers into
rectangle nanoflakes with two vertical sides and two
horizontal sides. As an example, we have chosen the bond
center as the geometrical center with τl;AðBÞ in Eq. (A6) for
quantum dots with D2h and D2, as shown in Figs. 2(a) and
2(b). For D3hðD6hÞ and D3ðD6Þ, we need to cut the infinite
bilayers into triangular (hexagonal) nanoflakes with three
(six) sides. The hexagon center is chosen as the geometrical
center in quantum dots withD3h in Fig. 2(c),D3 in Fig. 2(d),
D6h in Fig. 2(g), and D6 in Fig. 2(h).
For structures with point group D3d, the geometrical

center is at the C atom with its τl;AðBÞ in Eq. (A4), and the
twist angle is zero. The armchair edge is chosen along the x
axis with its basis vectors in Eq. (A2). The infinite bilayers
are then cut into triangular nanoflakes as shown in Fig. 2(f).
For structures with point groups C3v, C6v, and D6d, the

geometrical center is always at the hexagon center with
their τl;AðBÞ in Eq. (A5). The bottom and top layers have
armchair and zigzag edges along the x axis with their basis
vectors in Eqs. (A2) and (A3), respectively. This means that
the twist angle θ is 30°. Then, the infinite bilayers are cut
into triangular, hexagonal, and dodecagonal nanoflakes for
C3v, C6v, and D6d, respectively.

APPENDIX B: HAMILTONIAN

For twisted bilayer graphene systems, the Hubbard
Hamiltonian including both the effective tight-binding
kinetic energy contributed by the pz orbital of C atoms
and the electron-electron interactions reads

H ¼
X
i;s

εini;s þ
X
i;rij;s

tðrijÞc†i;scj;s þU
X
i

ni;↑ni;↓; ðB1Þ

where ni;s ¼ c†i;sci;s with the spin index s, εi is the on-site
energy and has been set at zero, U is an effective on-site
Coulomb repulsion (i.e., U� [59], here labeled as U for
simplicity), and the hopping tðrijÞ is written as a function of
rij, i.e.,

tðrijÞ ¼ VppσðjrijjÞ cos2 β þ VppπðjrijjÞ sin2 β; ðB2Þ

with β ¼ ẑ · rij=jrijj. The Slater-Koster bond integrals take
the forms as [67]

VppσðjrijjÞ ¼ −t0e2.218ðb0−jrijjÞFðjrijjÞ;
VppπðjrijjÞ ¼ t1e2.218ðh−jrijjÞFðjrijjÞ; ðB3Þ

where t0 ¼ 2.8 eV, b0 ¼ 1.42 Å, t1 ¼ 0.17t0 (∼0.48 eV),
FðjrijjÞ ¼ 1=ð1þ eðjrijj−0.265Þ=5Þ, and h is the interlayer
distance with 3.35 Å. In our calculations, the cutoff
carbon-carbon hopping distance is 5 Å. The pz-orbital
based tight-binding model in Eqs. (B2) and (B3) has been
widely used to well describe the electronic structures in
twisted bilayer graphene systems [37,41,46,68–71]. The
low-energy physics from the pz-orbital based tight-binding
model is also consistent with that from the Wannier-
function based tight-binding method [72] and density
functional theory [71]. For the correlated sp2 carbon
systems with a moderate local U, the mean-field approxi-
mation can successfully capture the low-energy physics
occurring in the systems [60,62,63,73]. Within this
approximation, the two-body interactions can be decoupled
as ni;↑ni;↓ ≈ ni;↑hni;↓i þ hni;↑ini;↓ − hni;↑ihni;↓i. With the
help of a self-consistent iterative calculation with a high
convergence precision of 10−6 of ni;s, the electronic
structure and property of system are determined after
minimizing the total energy. We note that the kinetic
energy with t0 ¼ 2.8 eV [67,74] is adopted to reproduce
the low-energy band structures of untwisted or twisted
bilayer graphene systems from ab initio calculations [67],
and the effective on-site Coulomb interaction U ¼ 1.2t0
[59,60] is used to capture the nonlocal Coulomb interaction
[59] at the mean-field level. In our calculations, t0 is used to
measure the Hamiltonian in Eq. (B1) as the energy unit, and
the difference results induced by different t0 in units of eV
can be unified by the dimensionless E=t0 and ℏω=t0.
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APPENDIX C: IRREDUCIBLE
REPRESENTATIONS

For an eigenstate with its energy En and wave function
ψξ
n (where ξ ¼ 1;…; g, with the degree of degeneracy g),

the representation matrix element Dn
ξ;ξ0 ðR̂Þ for an operation

class R̂ is written as Dn
ξ;ξ0 ðR̂Þ ¼ hψξ

njR̂jψξ0
n i. The character

χnðR̂Þ of the representation of R̂ is determined by
Tr½DnðR̂Þ�. We further obtain the reducible representation
ΓEn

¼ P⊕
μ aμΓμ of the energy state En by virtue of the

number of times Γμ, i.e.,

aμ ¼
1

h

X
i

χnðR̂iÞ½χnΓμ
ðR̂iÞ��; ðC1Þ

where h is the order of the point group, and R̂i is an
arbitrary symmetry operation of the system.

APPENDIX D: OPTICAL CONDUCTIVITY

According to the Kubo-Greenwood formula, the real part
of interband optical conductivity (Re½σαα�, neglecting the
notation Re hereinafter for simplicity) for each spin reads

σααðωÞ ¼
πℏ
A

X
mn

fm − fn
En − Em

jhnjĵαjmij2ðγ=πÞ
ðEm − En − ℏωÞ2 þ γ2

; ðD1Þ

where A ¼ NA0 is the area of quantum dot with A0 ¼
3

ffiffiffi
3

p
b20=4 as the average area per atom and N as the number

of atoms, fmðfnÞ is the occupation number (Fermi-Dirac
distribution function), and the small smearing parameter γ
is taken as 0.04 eV in our calculations. The current operator
ĵα is written as

ĵα ¼ e

�
−i
ℏ

�X
ij

X
s

ðri;α − rj;αÞtðrijÞc†i;scj;s; ðD2Þ

where s is the spin index. In our calculations, we use the
conductivity unit σ0 ¼ πe2=ð4ℏÞ for the presentation of
optical conductivity in a larger range.
On the other hand, the second factor inside the sum term

in Eq. (D1) is actually a Dirac δ operator function, which
can be expressed as a Fourier transform of the time-
evolution operator. In this respect, the real part of optical
conductivity can also be written as [75]

σααðωÞ ¼ lim
η→0þ

e−ℏω=kBT − 1

ℏωA

Z
∞

0

e−ητ sinωτ

× 2Imhφ2ðτÞjĵαjφ1ðτÞiα; ðD3Þ

where the wave functions jφ1ðτÞiα and jφ2ðτÞi take the
forms

jφ1ðτÞiα ¼ e−iHτ=ℏ½1 − fðHÞ�ĵαjφ0i;
jφ2ðτÞi ¼ e−iHτ=ℏfðHÞjφ0i: ðD4Þ

Here, fðHÞ ¼ 1=ð1þ eðH−μÞ=kBTÞ is a Fermi-Dirac distri-
bution operator with the chemical potential μ, and jφ0i is an
initial state consisting of a random superposition of the pz
orbitals at all sites. The time-evolution based calculation in
Eq. (D3) is very effective for predicting the optical
conductivity of systems with more than tens of thousands
of atoms [75], and hence Eq. (D3) is used for periodical
systems and large TBGQDs with a lot of atoms. In
Supplemental Material Fig. S13 [56], for infinite bilayer
graphene our theoretical calculations agree well with the
existing results [43] and reproduce twice the universal
dynamical conductivity [σmono ¼ e2=ð4ℏÞ] of graphene
inside the energy range from about 0.3t0 to 1.1t0 from
previous continuum models [76,77]. Note that here our
results need to be multiplied by 2π because the used area
A ¼ NA0 in our Eqs. (D1) and (D3) is twice the mono-
layer’s area S in previous works [43]. For our calculations
the temperature is set at 0 K. We also consider the nonzero
temperature and find temperature has only weak influences
on the optical conductivity of TBGQDs, as shown in
Supplemental Material Fig. S13 [56].

APPENDIX E: STRUCTURE RELAXATION

The atomistic model based on the classical reactive
empirical bond order [78] (intralayer interaction) and
Kolmogorov-Crespi [79] (interlayer interaction) potentials
is implemented in LAMMPS software [80,81]. All of the
edge carbon atoms are saturated by hydrogen atoms for the
relaxation.
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