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Interlayer hybridization in graphene quasicrystal and other bilayer graphene systems
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The incommensurate 30◦ twisted bilayer graphene (BG) possesses both relativistic Dirac fermions and
quasiperiodicity with 12-fold rotational symmetry arising from the interlayer interaction [Ahn et al.,
Science 361, 782 (2018) and Yao et al., Proc. Natl. Acad. Sci. USA 115, 6928 (2018)]. Understanding how
the interlayer states interact with each other is of vital importance for identifying and subsequently engineering
the quasicrystalline order in the layered structure. Herein, via symmetry and group representation theory we
unravel the interlayer hybridization selection rules governing the interlayer coupling in both untwisted and
twisted BG systems. Compared with the only allowed equivalent hybridization in D6h untwisted BG, D6 twisted
BG permits equivalent and mixed hybridizations, and D6d graphene quasicrystal allows both equivalent and
nonequivalent hybridizations. The energy-dependent hybridization strengths in graphene quasicrystal and D6

twisted BG show two remarkable characteristics: (i) near the Fermi level the weak hybridization owing to the
relatively large energy difference between Dirac bands from top and bottom layers, and (ii) in high-energy
regions the electron-hole asymmetry of hybridization strength with stronger interlayer coupling for holes, which
arises from the non-nearest-neighbor interlayer hoppings and the wave-function phase difference between pairing
states. These hybridization-generated band structures and their hybridization strength characteristics are verified
by the calculated optical conductivity spectra. Our theoretical study paves a way for revealing the interlayer
hybridization in van der Waals layered systems.

DOI: 10.1103/PhysRevB.105.125403

I. INTRODUCTION

Aside from the emergent correlated effects [1–16] in
slightly twisted bilayer graphene (BG), the recently discov-
ered quasicrystal [17,18] in 30◦ incommensurately twisted
BG has also attracted considerable interests in both experi-
ment [17–25] and theory [26–34]. Several synthetic methods
have been used to successfully grow graphene quasicrystal
on various substrates [17–20,23–25]. The quasiperiodicity
in these samples is experimentally identified by the low-
energy electron diffraction [17–20], transmission electron
microscopy [17,24], scanning tunneling microscopy [21],
Raman spectroscopy [18,23], and magnetotransport mea-
surements [21,23]. The angle-resolved photoemission spec-
troscopy measurements (ARPES) indicate the multiple Dirac
cones together with 12-fold rotational symmetry [17,18].
Owing to the interlayer scatterings with a constraint of the
generalized umklapp scatterings, replica Dirac cone bands
display unbalanced electron distribution features in ARPES
[22]. In theoretical aspects, a k-space tight-binding model is
constructed to explore the 12-fold symmetric resonant states
and the critical characteristic of wave functions as a hallmark
of quasicrystalline order is also verified [27]. The quantum
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oscillations with spiral Fermi surfaces are predicted theoreti-
cally due to the quasiperiodicity and weak interlayer coupling
[30]. Numerical simulations indicate that a fractal feature
happens for the sliding force and the low friction appears
as a result of the quasicrystalline structure [28]. The vertical
pressure, electric field, and double stacking can be utilized to
tune or remain the quasicrystalline electronic states [32,33]. In
doped graphene quasicrystal, a combination of high symmetry
and Coulomb interaction possibly enables another topolog-
ical superconductivity [35]. All of these peculiar physical
properties make graphene quasicrystal quite distinctive from
graphene monolayer.

Compared with the conventional quasicrystals where all
of the atoms are intrinsically located within a quasiperiodic
order [36,37], graphene quasicrystal is viewed as an extrin-
sic quasicrystal (i.e., engineered quasicrystals) because its
quasiperiodicity arises from the interlayer coupling between
two graphene monolayers. Thus, figuring out the origin of
quasicrystalline order requires a deep understanding of how
the interlayer states interact with each other. The interlayer
hybridization is defined that two pairing states belonging
to different layers are hybridized with each other to gen-
erate the hybridization states (i.e., bonding and antibonding
states), which are the eigenstates of the bilayer system. The
interlayer hybridization matrix element is defined as Uir,ir′ =
〈ϕb

ir |U |ϕt
ir′ 〉, where ϕb

ir and ϕt
ir′ are the states of the bottom and

top layers with irreducible representations (irreps) ir and ir′,
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FIG. 1. Top view of structures of twisted BGs and their quantum dots for (a) θt = 30◦, (b) θt = 15◦, and (c) θt = 0◦. In (a), the edges of
the D6d quantum dot are denoted by the bottom and top blue lines, six σd reflection planes, and six twofold rotational axes are represented,
respectively, by the dashed purple and green lines, and for each C6v monolayer the vertical planes denoted by the lines (0–6, 2–8, 4–10) and
the lines (1–7, 3–9, 5–11) are the reflection planes of three σv and three σd operations. In (b), the edges of the D6 quantum dot are denoted
by the bottom black thick lines and the top red thick lines, and the lines (0–6, 2–8, 4–10) and the lines (1–7, 3–9, 5–11) stand for the twofold
axes of three C′

2 and three C′′
2 rotations, respectively. In (c) the edges of the D6h quantum dot are denoted by the bottom and top blue lines, the

vertical planes denoted by the lines (0–6, 2–8, 4–10) and the lines (1–7, 3–9, 5–11) are the reflection planes of three σv and three σd , and the
lines (0–6, 2–8, 4–10) and the lines (1–7, 3–9, 5–11) also stand for the twofold axes of three C′

2 and three C′′
2 rotations, respectively. Here, each

monolayer of quantum dots has the C6v symmetry, and the sizes for the three different quantum dot structures are the size 6 (see the definition
for the size of quantum dots in Sec. II).

respectively, and U is the interlayer coupling. The nonzero
Uir,ir′ means that the two states ϕb

ir and ϕt
ir′ can be the pairing

states for interlayer hybridizations.
In this paper, we construct the interlayer hybridization se-

lection rules (in Table V) governing which states from two
layers are allowed to be hybridized in D6h untwisted BG,
D6 twisted BG, and D6d graphene quasicrystal. We find that
the allowed hybridizations include (i) equivalent hybridiza-
tion, for which the irreps for pairing states are the same,
in all BG systems, (ii) mixed hybridization, for which the
pairing states can have both the same and different irreps,
in D6 twisted BG, and (iii) nonequivalent hybridization, for
which the irreps of the pairing states are different, in graphene
quasicrystal. Our numerical calculations of the interlayer hy-
bridization matrix elements from pz orbital tight-binding (TB)
model, Wannier-orbital TB model, and density functional
theory (DFT) calculations further verify the interlayer hy-
bridization selection rules. The calculated energy-dependent
hybridization strengths show that (i) the interlayer hybridiza-
tion inside low-energy areas is weak in twisted BG because of
a relatively large energy difference between the Dirac bands
from top and bottom layers, and (ii) inside the high-energy
areas an electron-hole asymmetry of hybridization strength
exists as a result of non-nearest-neighbor interlayer hoppings
and the wave-function phase difference of the pairing states.
The obtained optical conductivity spectra with remarkably
different absorption features at different chemical potentials
further manifest the hybridization strength characteristics and
hybridization-induced band structures in graphene quasicrys-
tals.

The rest of this paper is organized as follows. In Sec. II,
the structures of graphene quasicrystal, twisted BG, and un-
twisted BG are presented. In Secs. III and IV, we discuss,

respectively, the interlayer hybridization selection rules and
the hybridization classification, which are further verified by
using pz-orbital TB, Wannier-orbital TB, and DFT calcula-
tions in Sec. V. In Sec. VI, we introduce the energy-dependent
interlayer hybridization strength. We further discuss the weak
hybridization around the Fermi level, the electron-hole asym-
metrical hybridizations inside high-energy areas, and the
electric field effects on hybridization strengths and resonant
quasicrystalline states. In Sec. VII, we present proposals
for identifying the hybridization-generated band structures of
graphene quasicrystal. In Sec. VIII, we summarize our main
conclusions.

II. STRUCTURES

Figure 1(a) shows the structure and symmetry operations
of graphene quasicrystal (30◦ twisted BG). The lattice vectors
for bottom and top graphene monolayers are ab

1 =
√

3a
2 i −

a
2 j, ab

2 =
√

3a
2 i + a

2 j and at
1 = ai + 0 j, at

2 = a
2 i +

√
3a
2 j, re-

spectively, where a = 2.46 Å is the lattice constant of
graphene, and h = 3.35 Å is the interlayer distance. The rela-
tive positions of the sublattices in a unit cell for bottom and top
graphene monolayers are τb

A = 1
3 ab

1 + 1
3 ab

2, τb
B = 2

3 ab
1 + 2

3 ab
2

and τt
A = 1

3 at
1 + 1

3 at
2, τt

B = 2
3 at

1 + 2
3 at

2, respectively. The ro-
tation center is located at the hexagon center of both two
layers. The graphene quasicrystal has D6d symmetry, and
the graphene monolayers have C6v symmetry. The character
tables of C6v and D6d are listed in Tables I and II, respectively.
A twisted BG with 0◦ < θt < 30◦ is obtained by rotating the
top layer of graphene quasicrystal with a angle of 30◦ − θt

clockwise, as shown in Fig. 1(b), where a twisted BG with
θt = 15◦ as an example is generated. The twisted BG with
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TABLE I. Character table of C6v .

C6v E 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

0◦ < θt < 30◦ has D6 symmetry. The character table of D6

is listed in Table III. The untwisted BG is the AA-stacked
BG with θt = 0◦ and D6h symmetry. Figure 1(c) shows the
structure and symmetry operations of the untwisted BG. The
character table of D6h is listed in Table IV. In Figs. 1(a)–1(c),
twisted BG quantum dots with the same point-group symme-
tries as their bulks in the corresponding three systems are also
sketched. The quantum dot structures consist of the bottom
and top dodecagons with their edges labeled by the corre-
sponding numbers from 0 to 11. The size of the quantum dot is
measured by the number n of zigzag chains from the rotation
center to an arbitrary edge of the quantum dot structure, and
the size is thus labeled by size n. In Figs. 1(a)–1(c), the sizes
for the three quantum dots are the size 6.

III. HYBRIDIZATION SELECTION RULES

For an arbitrary twisted BG consisting of two C6v mono-
layers with a twist angle θt , the Hamiltonian includes three
terms,

H = Hb
0 + Ht

0 + U, (1)

where Hb
0 and Ht

0 are the Hamiltonians of the bottom and
top layers with the corresponding layer indices b and t , re-
spectively, and U is the interlayer coupling. Because of the
θt -dependent symmetry properties, the twisted BG structures
are divided into D6h (θt = 0

◦
), D6 (0◦ < θt < 30◦), and D6d

(θt = 30◦) point groups, as listed in Table V. The Hamilto-
nians and reflection operations of the bottom and top layers
are connected by the rotation operation R(θt ) and the mirror
reflection σh with its mirror plane perpendicular to the z axis.
Therefore, we can write the Hamiltonian Ht

0 of the top layer
as

Ht
0 = [σhR(θt )]H

b
0 [σhR(θt )]

†, (2)

TABLE II. Character table of D6d .

D6d E 2S12 2C6 2S4 2C3 2S5
12 C2 6C′

2 6σd

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 −1 1
E1 2

√
3 1 0 −1 −√

3 −2 0 0
E2 2 1 −1 −2 −1 1 2 0 0
E3 2 0 −2 0 2 0 −2 0 0
E4 2 −1 −1 2 −1 −1 2 0 0
E5 2 −√

3 1 0 −1
√

3 −2 0 0

TABLE III. Character tables of D6.

D6 E 2C6 2C3 C2 3C′
2 3C′′

2

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

and the reflection operations between the top and bottom
layers as

σ t
v,i = R(θt )σ

b
v,i[R(θt )]

†,

σ t
d,i = R(θt )σ

b
d,i[R(θt )]

†,

σ
b/t
d,i = R(π/6)σ b/t

v,i [R(π/6)]†,

(3)

where i = 0, 1, 2, and σ b
v,0 = σx. We note that the C6v point

groups of the two layers are different due to the twist, namely,
Cb

6v �= Ct
6v . The character projection operator of the irrep ir for

a point group α is defined as

Pα
ir = lir

g

∑
R∈α

χ∗
ir (R)OR, (4)

where lir and g are the dimension of irrep ir and the order
of α, respectively, and χir (R) is the character of matrix rep-
resentation OR of the symmetry operation R for irrep ir. The
projection operator can be used to determine which irrep a
state has according to

Pα
ir |ϕir′ 〉 = δir,ir′ |ϕir′ 〉. (5)

Due to Eq. (2), the state of the bottom layer |ϕb
ir〉 and

the state of the top layer |ϕt
ir′ 〉 = [σhR(θt )]|ϕb

ir〉 always
have the same irreps (i.e., ir′ = ir) and the same energy.
Using the projection operator in Eqs. (4) and (5) and per-
forming some algebraic calculations (see Appendixes A and
B), we obtain the constraint equations of the hybridization
matrix element Uir,ir′ = 〈ϕb

ir |U |ϕt
ir′ 〉 for all three BG systems,

where |ϕb
ir〉 and |ϕt

ir′ 〉 are the states of the bottom and top
layers with irreps ir and ir′, respectively. These constraint

TABLE IV. Character table of D6h.

D6h E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1
B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0
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TABLE V. Interlayer hybridization selection rules and classifications in twisted and untwisted BG systems. PG stands for the point group.

Hybridization classifications

θt PG Selection rules Equivalent Mixed Nonequivalent

θt = 30◦ D6d

UAi,A j = δAi,A jUAi,A j

UEi,E j = δEi,E jUEi,E j

UB1,ir′ = δB2,ir′UB1,ir′

UB2,ir′ = δB1,ir′UB2,ir′

A1 + A1 ⇒ A1 + B2

A2 + A2 ⇒ A2 + B1

E1 + E1 ⇒ E1 + E5

E2 + E2 ⇒ E2 + E4

B1 + B2 ⇒ E3 + E3

B2 + B1 ⇒ E3 + E3

0◦ < θt < 30◦ D6

UAi,ir′ = (δA1,ir′ + δA2,ir′ )UAi,ir′

UBi,ir′ = (δB1,ir′ + δB2,ir′ )UBi,ir′

UEi,E j = δEi,E jUEi,E j

E1 + E1 ⇒ E1 + E1

E2 + E2 ⇒ E2 + E2

A1,2 + A1,2 ⇒ A1,2 + A2,1

B1,2 + B1,2 ⇒ B1,2 + B2,1

θt = 0◦ D6h Uir,ir′ = δir,ir′Uir,ir′

A1 + A1 ⇒ A1g + A2u

A2 + A2 ⇒ A2g + A1u

B1 + B1 ⇒ B2g + B1u

B2 + B2 ⇒ B1g + B2u

E1 + E1 ⇒ E1g + E1u

E2 + E2 ⇒ E2g + E2u

equations of Uir,ir′ in Table V indicate which states of the
two layers are allowed to be hybridized with each other, and
hence enable a rule of the interlayer hybridization, namely,
the hybridization selection rule. In graphene monolayer, states
with two-dimensional (2D) irreps Ei are always degenerate
and easily separated by the rotation operation C6. Thus, we use
C6 to classify the eigenstates of each monolayer by virtue of
C6|ϕb

ir,θ 〉 = eiθ |ϕb
ir,θ 〉 and C6|ϕt

ir′,θ ′ 〉 = eiθ ′ |ϕt
ir′,θ ′ 〉, where θ = 0

for ir = A1 and A2, ±π/3 for ir = E1, π for ir = B1 and B2,
and ±2π/3 for ir = E2. In the basis functions of C6, we write
the hybridization matrix element as U θθ ′

ir,ir′ = δθθ ′U θθ ′
ir,ir′ because

of

U θθ ′
ir,ir′ = 〈

ϕb
ir,θ

∣∣U ∣∣ϕt
ir′,θ ′

〉 = 〈
ϕb

ir,θ

∣∣H ∣∣ϕt
ir′,θ ′

〉
= 〈

ϕb
ir,θ

∣∣C†
6 HC6

∣∣ϕt
ir′,θ ′

〉 = ei(θ ′−θ )U θθ ′
ir,ir′ . (6)

IV. HYBRIDIZATION CLASSIFICATIONS
AND HYBRIDIZATION STATES

In this paper, an interlayer hybridization process is labeled
by irb + irt ⇒ ir+ + ir−, which describes that two pairing
states from the bottom layer with irrep irb and the top layer
with irrep irt are hybridized with each other and form the
hybridization states with irreps ir+ and ir− of the bilayer
system. Next, we will present the hybridization categories and
the irreps of hybridization states generated by the interlayer
hybridization in untwisted and twisted BGs. The derivations
in detail are given in Appendix B and the results are summa-
rized in Table V.

A. D6d graphene quasicrystal

For the D6d graphene quasicrystal, we derive the equivalent
hybridizations

A1 + A1 ⇒ A1 + B2,

A2 + A2 ⇒ A2 + B1,

E1 + E1 ⇒ E1 + E5,

E2 + E2 ⇒ E2 + E4,

(7)

and the nonequivalent hybridizations

B1 + B2 ⇒ E3 + E3,

B2 + B1 ⇒ E3 + E3.
(8)

For the equivalent hybridization ir + ir ⇒ ir+ + ir− with
ir = A1, A2, E1, and E2, the hybridization states with irreps
ir+ and ir− states can be written as

∣∣φir
±
〉 = 1√

2

(
ei θ

2
∣∣ϕb

ir

〉 ± S12

∣∣ϕb
ir

〉)
, (9)

where |ϕb
ir〉 is the eigenstate of rotation C6 from the bottom

layer with C6|ϕb
ir〉 = eiθ |ϕb

ir〉. Using S12S12 = C6, we have
S12|φir

±〉 = ±ei θ
2 |φir

±〉, which indicates that the states |φir
±〉

generated by equivalent hybridization are 12-fold symmetri-
cal. For nonequivalent hybridizations, the hybridization states
|φE3± 〉 are not the eigenstates for S12 but for C6, and hence |φE3± 〉
are sixfold symmetrical.

B. D6 twisted bilayer graphene

For twisted BGs with D6 symmetries, we derive the mixed
hybridizations

A1,2 + A1,2 ⇒ A1,2 + A2,1,

B1,2 + B1,2 ⇒ B1,2 + B2,1,
(10)

and the equivalent hybridizations

E1 + E1 ⇒ E1 + E1,

E2 + E2 ⇒ E2 + E2.
(11)

The mixed hybridization can be viewed as a mixture of
two equivalent hybridizations. For instance, the mixed hy-
bridization A1,2 + A1,2 ⇒ A1,2 + A2,1 can be rewritten as two
equivalent hybridizations

A1 + A1 ⇒ A1 + A2,

A2 + A2 ⇒ A2 + A1,
(12)

and then the two A1 (A2) states on the right side of Eq. (12) are
coupled together to form the eigenstates of the D6 twisted BG.

125403-4



INTERLAYER HYBRIDIZATION IN GRAPHENE … PHYSICAL REVIEW B 105, 125403 (2022)

FIG. 2. Interlayer hybridization matrix elements with their absolute values | 〈ϕb
ir,θ |U |ϕt

ir′,θ ′ 〉 | in units of eV at (a), (e) θt = 0◦, (b), (f)
θt = 10◦, (c), (g) θt = 20◦, and (d), (h) θt = 30◦ for (size 2, size 8) twisted BG quantum dots from pz-orbital-based TB model. These eigenstates
of the two layers |ϕb

ir,θ 〉 and |ϕt
ir′,θ ′ 〉 are classified by the irreps of C6v and θ in the eigenvalue eiθ of rotation operation C6.

The same procedure is also suitable for B1,2 + B1,2 ⇒ B1,2 +
B2,1, which is a mixture of two equivalent hybridizations

B1 + B1 ⇒ B1 + B2,

B2 + B2 ⇒ B2 + B1.
(13)

For one equivalent hybridization or the equivalent part of one
mixed hybridizations ir + ir ⇒ ir+ + ir−, the hybridization
states with irreps ir+ and ir− states can be written as

∣∣φir
±
〉 = 1√

2

(∣∣ϕb
ir

〉 ± σhR(θt )
∣∣ϕb

ir

〉)
. (14)

C. D6h untwisted BG

For AA-stacked BG, we derive only equivalent hybridiza-
tions

A1 + A1 ⇒ A1g + A2u,

A2 + A2 ⇒ A2g + A1u,

B1 + B1 ⇒ B2g + B1u,

B2 + B2 ⇒ B1g + B2u,

E1 + E1 ⇒ E1g + E1u,

E2 + E2 ⇒ E2g + E2u. (15)

The hybridization states with irreps ir+ and ir− states can be
written as

∣∣φir
±
〉 = 1√

2

(∣∣ϕb
ir

〉 ± σh

∣∣ϕb
ir

〉)
. (16)

D. D3d AB-stacked BG

Although AB-stacked BG can not be obtained by rotating
the top layer as shown in Fig. 1, we also here discuss briefly its
interlayer hybridizations. For AB-stacked BG, the system has
the D3d symmetry consisting of two C3v monolayers. After
symmetry analyses and algebraic evaluations we find that
there are only equivalent hybridizations

A1 + A1 ⇒ A1g + A2u,

A2 + A2 ⇒ A2g + A1u,

E + E ⇒ Eg + Eu. (17)

V. NUMERICAL VERIFICATION OF HYBRIDIZATION
SELECTION RULES

The hybridization selection rules in Table V are the re-
sult of symmetries no matter the system size. We consider
finite-size twisted BG structures with the same point-group
symmetries as those of the infinite-size systems to identify
the interlayer hybridization selection rules by the numerical
calculations of the hybridization matrix elements. We note
that the finite-size-induced additional changes to the sym-
metry are not included here. The twisted BG quantum dots
customized as shown in Fig. 1 are adopted to verify the in-
terlayer hybridization selection rules. For size-2 and size-8
twisted BG quantum dots at θt = 0◦, 10◦, 20◦, and 30◦, the
pz- and Wannier-orbital-based TB models (see Appendixes C
and D) are used to calculate the hybridization matrix elements,
and the results are shown in Figs. 2 and 3. The hybridiza-
tion and overlap matrix elements of size-2 twisted BGs at
θt = 0◦, 10◦, 20◦, and 30◦ are obtained by DFT calculations
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FIG. 3. Interlayer hybridization matrix elements with their absolute values |〈ϕb
ir,θ |U |ϕt

ir′,θ ′ 〉| in units of eV at (a), (e) θt = 0◦, (b), (f)
θt = 10◦, (c), (g) θt = 20◦, and (d), (h) θt = 30◦ for (size-2, size-8) twisted BG quantum dots from Wannier-orbital-based TB model. These
eigenstates of the two layers |ϕb

ir,θ 〉 and |ϕt
ir′,θ ′ 〉 are classified by the irreps of C6v and θ in the eigenvalue eiθ of rotation operation C6.

(see Appendix E), and the results are shown in Fig. 4. The
mapped distributions of these nonzero hybridization matrix

elements with U θθ ′
ir,ir′ �= 0 from the three different methods

manifest the hybridization selection rules of BG structures in

FIG. 4. Interlayer hybridization matrix elements (left panel in each subplot) and overlap matrix elements (right panel in each subplot) with
their absolute values | 〈ϕb

ir,θ |U |ϕt
ir′,θ ′ 〉 | and | 〈ϕb

ir,θ |ϕt
ir′,θ ′ 〉 | in units of eV at (a) θt = 0◦, (b) θt = 10◦, (c) θt = 20◦, and (d) θt = 30◦ for size-2

twisted BG quantum dots from DFT calculations. These eigenstates of the two layers |ϕb
ir,θ 〉 and |ϕt

ir′,θ ′ 〉 are classified by the irreps of C6v and
θ in the eigenvalue eiθ of rotation operation C6.
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FIG. 5. The interlayer hybridizations for size-2 graphene quasicrystal quantum dot. Each subplot stands for one hybridization labeled by
irb + irt above. The energy levels of the pairing states of the bottom and top C6v monolayers are correspondingly denoted by the left and right
black lines. The energy levels of the hybridization states of the D6d bilayer system are denoted by the middle red lines. The insets show the
real-space electron density (denoted by the circle size) for these states nearest above the insets themselves or indicated by the blue arrows. The
value of θ labeled below in each subplot corresponds to the eigenvalue of C6, i.e., C6|ϕb/t

ir 〉 = eiθ |ϕb/t
ir 〉.

Table V. As an example, Fig. 5 shows the eigenenergy spectra
and their irreps in the size-2 graphene quasicrystal quantum
dot calculated by pz-orbital-based TB model. These inter-
layer hybridizations follow the selection rules of graphene
quasicrystal. Furthermore, the electron density distributions
in the insets of Fig. 5 verify the 12-fold rotational symme-
try of hybridization states from equivalent hybridizations and
the sixfold rotational symmetry for hybridization states from
nonequivalent hybridizations.

VI. HYBRIDIZATION STRENGTHS

Following the interlayer hybridization rules, we can deter-
mine which states of the two monolayers can be hybridized
with each other. For an arbitrary eigenstate |φ〉 of twisted BG
with energy ε, we can write |φ〉 as c|ϕb〉 + d|ϕt 〉, with normal-
ized components |ϕb〉 and |ϕt 〉 from the bottom and top layers
and |c|2 + |d|2 = 1. To measure the energy-dependent inter-
layer coupling strength, we define the hybridization strength
for |φ〉 as

�ε =
{
ε − max(ε̄b, ε̄t ), if ε > max(ε̄b, ε̄t ),
ε − min(ε̄b, ε̄t ), if ε < min(ε̄b, ε̄t ),

(18)

where ε̄b = 〈ϕb|Hb
0 |ϕb〉 and ε̄t = 〈ϕt |Ht

0|ϕt 〉 are the energy
averages of states |ϕb〉 and |ϕt 〉. The state |φ〉 corresponding
to the first (second) case with positive (negative) �ε is defined
as the antibonding (bonding) state. To see how the interlayer
hybridizations vary on the energy, we use the pz-orbital-based
TB model to numerically compute the hybridization strength
as a function of energy for graphene quasicrystal structures
with size 10, size 20, and infinite size approximated by
the periodic 15/26 approximant [31], AA-stacked BG, and
other twisted BGs with various twist angles. The calculated

results are shown in Fig. 6. As we can see, the energy-
dependent hybridization strength shows two characteristics:

FIG. 6. The hybridization strengths as a function of energy for
dodecagonal graphene quasicrystal structures with size 10 in (a) and
size 20 in (b) and for other infinite-size twisted BG systems with var-
ious twist angles in (c), where the size-∞ quasicrystal is calculated
using a periodic 15/26 approximant [31], and the two black lines
represent the hybridization strengths of AA-stacked BG only with
the nearest-neighbor interlayer hopping. The right two insets show
the real-space electron density for the signaled states indicated by
arrows in (a).
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(i) the hybridization strengths in twisted BG are weak near the
Fermi level except for the edge states denoted by red dots in
Figs. 6(a) and 6(b) with localized electron density at the edges
and the hybridization states in AA-stacked BG in Fig. 6(c),
and (ii) an electron-hole asymmetry of hybridization strength
with stronger interlayer coupling for holes appears in higher-
energy areas in Fig. 6(c). The calculated weak interlayer
hybridization strengths inside the low-energy area verify that
graphene quasicrystal has a similar low-energy dispersion as
that of a decoupled graphene bilayer [17,18,24,38,39]. Next,
we will discuss the two characteristics of energy-dependent
hybridization strengths in these systems.

A. Weak hybridization strengths near the Fermi level

This weak hybridization strength near the Fermi
level can be understood by the perturbation theory. We

first express the interlayer Hamiltonian matrix elements
based on the Bloch bases. Within the pz-orbital-based
TB model for both untwisted BG and twisted BG,
the Bloch bases of the two monolayers are defined
as

|kb, X b〉 = 1√
N

∑
Lb

eikb·(Lb+τb
Xb )∣∣Lb + τb

X b

〉
,

|kt , X t 〉 = 1√
N

∑
Lt

eikt ·(Lt +τt
Xt )|Lt + τt

X t 〉,
(19)

where N is the normalization factor, Lb = nb
1ab

1 + nb
2ab

2 (Lt =
nt

1at
1 + nt

2at
2) is the unit-cell vector, and |Lb + τb

X b〉 (|Lt +
τt

X t 〉) denotes the pz orbital located at sublattice X b (X t ) in
unit cell Lb (Lt ). The intralayer Hamiltonian matrix elements
read as

〈kb, X b|Hb
0 |kb′

, X b′〉 = δkbkb′
∑
Lb

t (Lb+τb
X b′X b )eikb·(Lb+τb

Xb′
Xb

)
,

〈kt , X t |Ht
0|kt ′, X t ′〉 = δkt kt ′

∑
Lt

t (Lt+τt
X t ′Xt )e

ikt ·(Lt +τt
Xt ′Xt )

,

(20)

where τb
X b′X b = τb

X b′ − τb
X b and τt

X t ′Xt = τt
X t ′ − τt

X t . The interlayer Hamiltonian matrix elements read as [27,33,40]

〈kb, X b|U |kt , X t 〉 =
∑
GbGt

T (|kb + Gb|)eiGb·τb
Xb e−iGt ·τt

Xt δkb+Gb,kt +Gt , (21)

where T (|kb + Gb|) is the xy-plane Fourier transform of in-
terlayer hopping function t (rxy + hêz ) at kb + Gb. Here Gb =
mbbb

1 + nbbb
2 and Gt = mt bt

1 + nt bt
2 run over all of the recipro-

cal points of the bottom and top layers, respectively, with bb/t
1

and bb/t
2 being the reciprocal lattice vectors of the two layers.

The in-plane Fourier transform T (q) of the interlayer hopping
t (r) at q is defined as

T (q) = 1

S

∫
t (rxy + hêz )e−iq·rxy drxy, (22)

where S is the area of the unit cell in graphene, and êz

is the unit vector along the z axis. T (q) = T (|q|) depends
on only the length of q for the pz-orbital-based TB model.
Equation (21) indicates that the interlayer Hamiltonian matrix
elements are nonzero only for the Bloch bases of the two
monolayers with the wave vectors satisfying kb + Gb = kt +
Gt . This wave-vector-dependent interlayer coupling condition
kb + Gb = kt + Gt can be rewritten as [41–43]

kb − kt = mg1 + ng2, (23)

where m and n are two arbitrary integer values, and g1 and g2
take the forms as

g1 = bb
1 − bt

1,

g2 = bb
2 − bt

2. (24)

We now consider a commensurate twisted BG with θt =
9.43◦ as an example to illustrate the weak interlayer hy-
bridization strengths near the Fermi level. Figure 7 shows

the Brillouin zones of this twisted BG and its two layers.
According to the wave-vector-dependent interlayer coupling
condition in Eqs. (23) and (24), the Dirac point Kb of the bot-
tom layer can couple with the kt points of the top layer mainly
at kt = Kb + 0, kt = Kb + g1, and kt = Kb − g2, and the cou-
pling strengths between Kb and the above three kt points are
the same, i.e., T (|Kb|) ∼ 0.11 eV [7,44]. The corresponding
hybridization-generated band structures together with hy-
bridization strengths are plotted in Fig. 8(a), where the color
represents the interlayer hybridization strength �ε in Eq. (18),
and the black dashed lines represent the Dirac band structures
of the Hamiltonians Hb

0 and Ht
0 of graphene monolayers. As

we can see, the hybridization strengths around Kb and Kt

(near the Fermi level) are indeed weak and the hybridization
strengths around M point inside relatively high-energy areas
are obviously stronger in Fig. 8(a). The weak hybridization
strength near the Fermi level can be well explained by the
second-order nondegenerate perturbation theory. The first-
order energy correction is E (1)

n = 〈ϕ(0)
n |U |ϕ(0)

n 〉 with the wave
function of ground state |ϕ(0)

n 〉 of unperturbed Hamiltonian H0,
and the second-order energy correction E (2)

n reads as

E (2)
n =

∑
m �=n

∣∣〈ϕ(0)
m

∣∣U ∣∣ϕ(0)
n

〉∣∣2

E (0)
n − E (0)

m

. (25)

The wave-vector-dependent interlayer coupling conditions in
Eqs. (23) and (24) indicate the direct interlayer couplings
between kb = Kb and kt = Kt points are not allowed, i.e., the
first-order energy correction E (1)

n is zero. Around Kb and Kt ,
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FIG. 7. Brillouin zones of twisted BG with θt = 9.43◦ and its two
layers. Black and red big hexagons are the Brillouin zones of the
bottom and top graphene, respectively. Gray hexagon network is the
Brillouin zone of twisted BG with g1 and g2 as its reciprocal lattice
vectors. The wave-vector-dependent interlayer coupling condition in
Eqs. (23) and (24) requires that the Bloch function from the bottom
layer at kb = Kb mainly couple with three Bloch functions from the
top layer at kt = Kb + 0, Kb + g1, and Kb − g2. If the equal wave
vectors kb and kt are on the blue dashed line across M point, the
Bloch bases of the two monolayers have the same energy. On the
blue dashed line, M point is closest to the Dirac points Kb and Kt .

the energy differences between the two Dirac linear bands
(denoted by dashed lines) are about 1.33 and 1.49 eV in
Fig. 8(a), and the coupling strength | 〈ϕ(0)

m |U |ϕ(0)
n 〉 | is 0.11 eV

[7,44], and hence the second-order energy correction E (2)
n will

be very small in Eq. (25). Consequently, the hybridization
strength is very weak near the Fermi level.

For these k points on the blue dashed line in Fig. 7, the
states from the two monolayers have the same energy, and
the first-order degenerate perturbation theory can be applied
to illustrate the relatively large hybridization strength near
the blue dashed line. According to the first-order degenerate
perturbation theory, the original degenerate energy bands are

FIG. 8. (a) The calculated unfolded band structures for twisted
BG with θt = 9.43◦ and (b) the calculated band structures for AA-
stacked BG, where the color denotes the interlayer hybridization
strength 
ε, and the black dashed lines stand for the band structures
of the bottom and top graphene monolayers.

FIG. 9. Two six-carbon rings with a twist angle of θt , where the
bottom and top rings are denoted by black and red colors, respec-
tively, t0, t1, and t2 are the interlayer NN, NNN, and TNN hoppings,
respectively, and ν0, ν1, and ν2 are the interlayer NN, NNN, and TNN
displacements, respectively.

split, and hence the hybridization strength is relatively large,
such as the hybridization strength (denoted by the color)
around M point in Fig. 8(a). For AA-stacked BG, the energy
bands (dashed lines) for the top and bottom monolayers are
always degenerate at all k points, and hence the degenerate
energy bands are split with the energy difference denoted by
the green double arrows and the relatively large hybridization
strength at each k point, as shown in Fig. 8(b), as a result of
the first-order degenerate perturbation theory.

B. Electron-hole asymmetrical hybridization strength inside
high-energy area

We first use a toy model of two six-carbon rings in Fig. 9
as a starting point to seek an expression of interlayer hy-
bridization strengths and then generalize the expression of
interlayer hybridization strengths in an arbitrary BG system.
The Hamiltonian of the twisted two six-carbon rings reads as

H =
[

Hb
0 U

U † Ht
0

]
, (26)

where Hb
0 and Ht

0 are the Hamiltonians of the bottom and top
rings, respectively, and U is the interlayer coupling. For sim-
plicity, we consider the nearest-neighbor (NN) approximation
within the monolayers and write Hb

0 and Ht
0 as

Hb
0 = Ht

0 =

⎡
⎢⎢⎢⎢⎢⎣

0 −t 0 0 0 −t
−t 0 −t 0 0 0

0 −t 0 −t 0 0
0 0 −t 0 −t 0
0 0 0 −t 0 −t

−t 0 0 0 −t 0

⎤
⎥⎥⎥⎥⎥⎦, (27)

where −t is the in-plane NN hopping energy. The U within the
third-nearest-neighbor (TNN) approximation of the interlayer
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hoppings is written as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0(ν0) t2(ν2) 0 0 0 t1(ν1)

t1(ν1) t0(ν0) t2(ν2) 0 0 0

0 t1(ν1) t0(ν0) t2(ν2) 0 0

0 0 t1(ν1) t0(ν0) t2(ν2) 0

0 0 0 t1(ν1) t0(ν0) t2(ν2)

t2(ν2) 0 0 0 t1(ν1) t0(ν0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28)

where t0(ν0), t1(ν1), and t2(ν2) are the NN, next-nearest-
neighbor (NNN), and TNN interlayer hoppings, respectively,
as shown in Fig. 9. From Eqs. (C1) and (C2), one can find
that all t0(ν0), t1(ν1), and t2(ν2) are positive. In addition,
for untwisted case with θt = 0◦, t0(ν0) > t1(ν1) = t2(ν2) >

0, and for θt = 30◦, t0(ν0) = t1(ν1) � t2(ν2) ∼ 0. The real
eigenvalues ε and eigenvectors ψ for Hb

0 and Ht
0 in Eq. (27)

read as

A1, ε = −2t : ψ
b/t
0 = 1√

6
(1, 1, 1, 1, 1, 1)T ,

E1, ε = −t : ψ
b/t
1 = 1

2
(−1,−1, 0, 1, 1, 0)T ,

E1, ε = −t : ψ
b/t
2 = 1

2
(1, 0,−1,−1, 0, 1)T ,

E2, ε = t : ψ
b/t
3 = 1

2
(−1, 1, 0,−1, 1, 0)T ,

E2, ε = t : ψ
b/t
4 = 1

2
(−1, 0, 1,−1, 0, 1)T ,

B1, ε = 2t : ψ
b/t
5 = 1√

6
(−1, 1,−1, 1,−1, 1)T . (29)

Within the basis function of rotation operation C6, we rewrite
the eigenvectors as

A1, θ = 0, ε = −2t : φ
b/t
0 = ψ

b/t
0 = 1√

6
(1, 1, 1, 1, 1, 1)T ,

E1, θ = −π

3
, ε = −t : φ

b/t
1 = 2√

6

(
e−i π

3 ψ
b/t
1 + ψ

b/t
2

) = 1√
6

(ei π
3 , ei 2π

3 , eiπ , e−i 2π
3 , e−i π

3 , ei0)T ,

E1, θ = π

3
, ε = −t : φ

b/t
2 = 2√

6

(
ei π

3 ψ
b/t
1 + ψ

b/t
2

) = 1√
6

(e−i π
3 , e−i 2π

3 , eiπ , ei 2π
3 , ei π

3 , ei0)T , (30)

and

E2, θ = −2π

3
, ε = t : φ

b/t
3 = 2√

6

(
e−i 2π

3 ψ
b/t
3 + ψ

b/t
4

) = 1√
6

(
ei 2π

3 , e−i 2π
3 , ei0, ei 2π

3 , e−i 2π
3 , ei0

)T
,

E2, θ = 2π

3
, ε = t : φ

b/t
4 = 2√

6

(
ei 2π

3 ψ
b/t
3 + ψ

b/t
4

) = 1√
6

(
e−i 2π

3 , ei 2π
3 , ei0, e−i 2π

3 , ei 2π
3 , ei0

)T
,

B1, θ = π, ε = 2t : φ
b/t
5 = ψ

b/t
5 = 1√

6
(−1, 1,−1, 1,−1, 1)T , (31)

where θ is related to the eigenvalue of C6, i.e., C6φ
b/t
i = eiθφ

b/t
i . Using Eqs. (30) and (31) and the hybridization selection rule in

Table V, we can write a uniform formula for the monolayer state as φb/t = (ab/t
0 , ab/t

1 , ab/t
2 , ab/t

3 , ab/t
4 , ab/t

5 )T with
∑5

i=0 |ab/t
i |2 = 1.

The interlayer bonding (−) and antibonding (+) states for each interlayer hybridization read as

ϕ− = 1√
2

(
φb

−φt

)
= 1√

2
(ab

0, ab
1, ab

2, ab
3, ab

4, ab
5,−at

0,−at
1,−at

2,−at
3,−at

4,−at
5)T ,

ϕ+ = 1√
2

(
φb

φt

)
= 1√

2
(ab

0, ab
1, ab

2, ab
3, ab

4, ab
5, at

0, at
1, at

2, at
3, at

4, at
5)T . (32)

The energy for bonding (−) and antibonding (+) states read as

ε± = ϕ
†
±Hϕ± = 1

2 [φb]
†
Hb

0 φb + 1
2 [φt ]†Ht

0φ
t ± 1

2 [φb]
†
Uφt ± 1

2 [φt ]†U †φb = 1
2εb + 1

2εt ± 1
2 [φb]

†
Uφt ± 1

2 [φt ]†U †φb. (33)

Then, the corresponding interlayer hybridization strengths for the two states are

�ε− = − 1
2 [φb]

†
Uφt − 1

2 [φt ]†U †φb,

�ε+ = 1
2 [φb]

†
Uφt + 1

2 [φt ]†U †φb,

(34)

where [φb]
†
Uφt and [φt ]†U †φb take the form as

[φb]
†
Uφt =

5∑
i=0

t0(ν0)
(
ab

i
∗
at

i

) + t1(ν1)
(
ab

0
∗
at

5 + ab
1
∗
at

0 + ab
2
∗
at

1 + ab
3
∗
at

2 + ab
4
∗
at

3 + ab
5
∗
at

4

)
+ t2(ν2)

(
ab

0
∗
at

1 + ab
1
∗
at

2 + ab
2
∗
at

3 + ab
3
∗
at

4 + ab
4
∗
at

5 + ab
5
∗
at

0

)
,
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FIG. 10. Phases of 12 eigenstates φ
b/t
i (with i = 0, . . . , 5, and φ

b/t
i = φi) in Eqs. (30) and (31) for the two six-carbon rings with a twist

angle of θt . The wave-function phase difference of pairing states φ
b/t
i for interlayer NN, NNN, and TNN displacements are denoted by �θNN,

�θNNN, and �θTNN, respectively. The calculated interlayer hybridization strengths �ε+ (here labeled as �ε) and �ε− (i.e., −�ε) in Eq. (34)
decrease with the increasing energy ε.

[φt ]†U †φb =
5∑

i=0

t0(ν0)
(
ab

i at
i
∗) + t1(ν1)

(
ab

0at
5
∗ + ab

1at
0
∗ + ab

2at
1
∗ + ab

3at
2
∗ + ab

4at
3
∗ + ab

5at
4
∗)

+ t2(ν2)
(
ab

0at
1
∗ + ab

1at
2
∗ + ab

2at
3
∗ + ab

3at
4
∗ + ab

4at
5
∗ + ab

5at
0
∗)

. (35)

Equations (28) and (32) have been used to obtain Eq. (35), which can be further rewritten as

[φb]
†
Uφt =

5∑
j=0

t0(ν0)
(
ab,∗

r j
at

r j+ν0

) +
5∑

j=0

t1(ν1)
(
ab,∗

r j
at

r j+ν1

) +
5∑

j=0

t2(ν2)
(
ab,∗

r j
at

r j+ν2

)
,

(36)

[φt ]†U †φb =
5∑

j=0

t0(ν0)
(
ab

r j
at,∗

r j+ν0

) +
5∑

j=0

t1(ν1)
(
ab

r j
at,∗

r j+ν1

) +
5∑

j=0

t2(ν2)
(
ab

r j
at,∗

r j+ν2

)
,

where ν0, ν1, and ν2 are the interlayer NN, NNN, and TNN
displacements. Equations (34) and (36) indicate that the in-
terlayer hybridization strength �ε− and �ε+ are determined
by these interlayer hoppings t0(ν0), t1(ν1), and t2(ν2) and the
wave-function phase difference of pairing states for these NN,
NNN, and TNN displacements. As shown in Fig. 10 and
Eqs. (30) and (31), with the increasing energy, i.e., φi from φ0

to φ5, the absolute values |�θ
j

NN| (with ei�θ
j

NN = ab,∗
r j

at
r j+ν0

)

of phase differences �θ
j

NN of each pairing states φb
i and φt

i
for the interlayer NN displacements are always equal to 0,
namely, �θNN = 0. For φi from φ0 to φ5, both the absolute
values |�θ

j
NNN| (with ei�θ

j
NNN = ab,∗

r j
at

r j+ν1
) and |�θ

j
TNN| (with

ei�θ
j

TNN = ab,∗
r j

at
r j+ν2

) of phase differences �θ
j

NNN and �θ
j

TNN

for the interlayer NNN and TNN displacements vary in a form
of∣∣�θ

j
NNN

∣∣ = ∣∣�θ
j

TNN

∣∣ = |�θNNN| = |�θTNN|
= 0 → π/3 → π/3 → 2π/3 → 2π/3 → π. (37)

Therefore, with the increasing energy from negative
to positive values, the size �ε of the interlayer
hybridization strength for the bonding and an-
tibonding states (i.e., �ε = �ε+ = −�ε−) vary
with

�ε = t0(ν0) + t1(ν1) + t2(ν2) → t0(ν0) +
√

3[t1(ν1)

+ t2(ν2)]/2 → t0(ν0) +
√

3[t1(ν1) + t2(ν2)]/2
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→ t0(ν0) − [t1(ν1) + t2(ν2)]/2 → t0(ν0) − [t1(ν1)

+ t2(ν2)]/2 → t0(ν0) − t1(ν1) − t2(ν2). (38)

Equation (38) indicates t1(ν1), t2(ν2), �θ
j

NNN, and �θ
j

TNN
are responsible for the electron-hole asymmetry of the inter-
layer hybridization with the stronger hybridization strength
for holes in the structure of two six-carbon rings.

Let us discuss an arbitrary BG system including 2N atoms
with N as the number of atoms in one monolayer. The in-
terlayer NN hopping t0(ν0), NNN hopping t1(ν1), and TNN
hopping t2(ν2) are determined by Eqs. (C1) and (C2). The
pairing states φb/t are written as

φb/t = (
ab/t

0 , ab/t
1 , . . . , ab/t

N−1

)T
, (39)

where
∑N−1

i=0 |ab/t
i |2 = 1. The hybridization states read as

ϕ− = 1√
2

(
φb

−φt

)
= 1√

2

(
ab

0, ab
1, . . . , ab

N−1,−at
0,−at

1, . . . ,−at
N−1

)T
,

ϕ+ = 1√
2

(
φb

φt

)
= 1√

2

(
ab

0, ab
1, . . . , ab

N−1, at
0, at

1, . . . , at
N−1

)T
. (40)

The interlayer hybridization strengths of the hybridization states ϕ± have the same forms as Eq. (34), where [φb]
†
Uφt and

[φt ]†U †φb for the arbitrary BG system including 2N atoms can be written as

[φb]
†
Uφt =

N−1∑
j=0

∑
ν0

t0(ν0)
(
ab,∗

r j
at

r j+ν0

) +
N−1∑
j=0

∑
ν1

t1(ν1)
(
ab,∗

r j
at

r j+ν1

) +
N−1∑
j=0

∑
ν2

t2(ν2)
(
ab,∗

r j
at

r j+ν2

)
,

[φt ]†U †φb =
N−1∑
j=0

∑
ν0

t0(ν0)
(
ab

r j
at,∗

r j+ν0

) +
N−1∑
j=0

∑
ν1

t1(ν1)
(
ab

r j
at,∗

r j+ν1

) +
N−1∑
j=0

∑
ν2

t2(ν2)
(
ab

r j
at,∗

r j+ν2

)
. (41)

The pairing states φb/t are the same for equivalent and mixed
hybridizations according to the hybridization selection rules
in Table V, and hence the interlayer NN phase difference
�θ

j
NN is always 0, i.e., ab,∗

r j
at

r j+ν0
= 1, in Eq. (41). As a re-

sult, with the increasing energy, the hybridization strength
�ε is changed by the interlayer non-nearest-neighbor hop-
pings t1 and t2 and phase differences �θ

j
NNN (with ei�θ

j
NNN =

ab,∗
r j

at
r j+ν1

) and �θ
j

TNN (with ei�θ
j

TNN = ab,∗
r j

at
r j+ν2

). Different
from the simplest case of twisted two-six carbon rings, for the
twisted BG with a large number of carbon atoms, the energy
of the state ϕ− can be lower or higher than the energy of the
state ϕ+ depending on the pairing states, and thus ϕ− and ϕ+
do not correspond to the bonding and antibonding states.

For nonequivalent hybridizations in D6d graphene qua-
sicrystal systems in Eq. (8), φb

Bi
and φt

Bi
with irrep Bi have the

same energy εb
Bi

= εt
Bi

with i = 1, 2, after the local reflection

plane is chosen, i.e., σ b
v,0 = σx and σ t

v,i = σ b
d,i. Consequently,

two nonequivalent hybridizations B1
b + B2

t and B2
b + B1

t in
Eq. (8) with sign + denoting pairing are actually the same,
and hence we can perform a following transformation of the
wave functions of two nonequivalent hybridizations to obtain
a uniform expression of the pairing states

(
φ

b/t
+

φ
b/t
−

)
= 1√

2

(
1 1
1 −1

)(
φ

b/t
B1

φ
b/t
B2

)
, (42)

where the pairing states φ
b/t
λ with λ = + or − are written as

φ
b/t
λ = (

cb/t
λ,0, cb/t

λ,1, . . . , cb/t
λ,N−1

)T
, (43)

with
∑N−1

i=0 |cb/t
λ,i |2 = 1. The hybridization states read as

ϕλ,− = 1√
2

(
φb

λ−φt
λ

)
= 1√

2

(
cb
λ,0, cb

λ,1, . . . , cb
λ,N−1,−ct

λ,0,−ct
λ,1, . . . ,−ct

λ,N−1

)T
,

ϕλ,+ = 1√
2

(
φb

λ

φt
λ

)
= 1√

2

(
cb
λ,0, cb

λ,1, . . . , cb
λ,N−1, ct

λ,0, ct
λ,1, . . . , ct

λ,N−1

)T
. (44)

The interlayer hybridization strengths of the hybridization states have the same forms as Eq. (34), where [φb
λ]

†
Uφt

λ and [φt
λ]†U †φb

λ

for the arbitrary BG system including 2N atoms can be written as

[φb
λ]

†
Uφt

λ =
N−1∑
j=0

∑
ν0

t0(ν0)
(
cb,∗
λ,r j

ct
λ,r j+ν0

) +
N−1∑
j=0

∑
ν1

t1(ν1)
(
cb,∗
λ,r j

ct
λ,r j+ν1

) +
N−1∑
j=0

∑
ν2

t2(ν2)
(
cb,∗
λ,r j

ct
λ,r j+ν2

)
,

[φt
λ]†U †φb

λ =
N−1∑
j=0

∑
ν0

t0(ν0)
(
cb
λ,r j

ct,∗
λ,r j+ν0

) +
N−1∑
j=0

∑
ν1

t1(ν1)
(
cb
λ,r j

ct,∗
λ,r j+ν1

) +
N−1∑
j=0

∑
ν2

t2(ν2)
(
cb
λ,r j

ct,∗
λ,r j+ν2

)
. (45)

125403-12



INTERLAYER HYBRIDIZATION IN GRAPHENE … PHYSICAL REVIEW B 105, 125403 (2022)

FIG. 11. The hybridization strengths under different interlayer potential difference 
V as a function of energy for twisted BG with θt =
9.43◦ (left panel) and graphene quasicrystal simulated by a periodic 15/26 approximant (right panel).

In this respect, for the same λ, φb
λ and φt

λ are the same, and
hence the interlayer NN phase difference �θ

j
NN is also 0, i.e.,

cb,∗
λ,r j

ct
λ,r j+ν0

= 1. As a result, with the increasing energy, the
hybridization strength �ε is still changed by the interlayer
non-nearest-neighbor hoppings t1 and t2 and the phase differ-
ences �θ

j
NNN (with ei�θ

j
NNN = cb,∗

λ,r j
ct
λ,r j+ν1

) and �θ
j

TNN (with

ei�θ
j

TNN = cb,∗
λ,r j

ct
λ,r j+ν2

) of the pairing states φ
b/t
λ . In a word,

for three categories of hybridizations in Table V, with the
increasing energy, the electron-hole asymmetrical hybridiza-
tion with the stronger hybridization strength for holes is a
result of non-nearest-neighbor interlayer hoppings and phase
differences of pairing states.

C. Electric field effects on hybridization strength

The interlayer potential difference 
V induced by a ver-
tical electric field is usually applied to modify the electronic
structures and transport properties of twisted BG to achieve
gate-controllable devices. Here we reveal the electric field
effects on the hybridization strength in twisted BGs. Figure 11
shows the hybridization strengths under different interlayer
potential difference 
V in twisted BG with θt = 9.43◦ and
graphene quasicrystal simulated by a periodic 15/26 ap-
proximant. With the increasing interlayer potential difference

V , the hybridization strengths near the Fermi level are en-
hanced. The results can be still explained by the second-order
nondegenerate perturbation theory at nondegenerate energy
positions and the first-order degenerate perturbation theory at
degenerate energy positions. For example, for the unfolded
band structures of twisted BG with θt = 9.43◦ in Fig. 12, the

interlayer potential difference 
V lifts the Dirac linear disper-
sion around Kb of the bottom layer and moves down the Dirac
linear dispersion around Kt of the top layer. Consequently,
the energy difference between the two linear bands is reduced
near the Fermi level, and hence the hybridization strength is
enhanced near the Fermi level according to the second-order
nondegenerate perturbation theory. For the degenerate energy
positions, the first-order degenerate perturbation theory in-
duces an obvious hybridization strength as well.

D. Electric field effects on resonant quasicrystalline states

Due to the quasiperiodicity, there are resonant quasicrys-
talline states in graphene quasicrystal, which originate from
the resonant coupling of the Bloch functions with the same
energy. The k points of these Bloch functions are plotted in
Fig. 13. Among the 12 k points, 6 k points belong to the
bottom layer with kb = k0 + Gt and 6 k points belong to the
top layer with kt = k0 + Gb, where k0 = 0 and Gb and Gt

are the reciprocal points of the bottom and top layers with
|Gb| = |Gt | = 4π/

√
3a. It can be easily checked that any kb

and kt satisfy the wave-vector-dependent interlayer coupling
condition in Eqs. (23) and (24). The 12 k points are made up of
two C6v subsystems of the six k points denoted by black empty
dots from the bottom layer and the six k points denoted by red
solid dots from the top layer in Fig. 13 and the Hamiltonian
keeps the D6d point-group symmetry including the operations

E = I (12) ⊗ σ0,

S2i+1
12 = S2i+1

12 (k) ⊗ σ0 (i = 0, 1, . . . , 5),

C2i
12 = C2i

12(k) ⊗ σ0 (i = 1, 2, . . . , 5),
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FIG. 12. The calculated unfolded band structures for twisted BG with θt = 9.43◦ under different interlayer potential difference 
V , where
the color map denotes the interlayer hybridization strength 
ε, and black dashed lines stand for the band structures of the bottom and top
graphene monolayers.

C′
2,i = C′

2,i(k) ⊗ σ1 (i = 0, 1, . . . , 5),

σd,i = σd,i(k) ⊗ σ1 (i = 0, 1, . . . , 5), (46)

where I (12), S2i+1
12 (k), C2i

12(k), C′
2,i(k), and σd,i(k) are the

symmetry operations acting on the 12 k points, and σ0 and
σ1 are the identity operation I (2) and the x component of
Pauli matrices, respectively, acting on the sublattice. In the
direct product space of the k space and sublattice space, one
can construct a 24 × 24 tight-binding Hamiltonian for the
resonant quasicyrstalline states [27]

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H (0) W0,1 W †
11,0

W †
0,1 H (1) W1,2

W †
1,2 H (2) . . .

. . .
. . . W9,10

W †
9,10 H (10) W10,11

W11,0 W †
10,11 H (11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

FIG. 13. The 12 k points for constructing the 24 × 24 Hamilto-
nian of the resonant states in reciprocal space. The black and red
hexagon networks, respectively, denote the Brillouin zones for the
bottom and top layers. The 12 k points are labeled by black empty
and red solid dots with corresponding numbers from the two C6v

subsystems.

Here, H (n) is the Hamiltonian at nth k point with the form

H (n) =
(

�V/2 0.682γ0

0.682γ0 �V/2

)
(odd n),

H (n) =
(−�V/2 0.682γ0

0.682γ0 −�V/2

)
(even n),

(48)

where �V is the interlayer potential difference induced by
the vertical electric field. Wn,n+1 is the interlayer interaction
between nth and (n + 1)th k points. If the sublattice order is
rearranged as (Ab, Bb) or (At , Bt ) when n mod 4 = 2, 3 and
(Bb, Ab) or (Bt , At ) when n mod 4 = 0, 1, all of the interlayer
interaction matrices Wn,n+1’s have the same form

Wn,n+1 = T0

(
e

2π
3 i 1
1 e− 2π

3 i

)
, (49)

where T0 is 0.157 eV according to the tight-binding param-
eters (see Appendix C). The rearrangement of the sublattice
order has no influence on H (n).

For each isolated C6v subsystem, the energy gap is 3.68 eV
because of the intralayer sublattice interaction, as denoted
by the energy difference between the positive and negative
energy levels with black lines in Fig. 14(a). The energy of the
hybridization states is denoted by the red lines. The interlayer
hybridizations follow the selection rule in Eqs. (7) and (8) and
the hybridization strength �ε for the valence band is stronger
than that for the conduction band. As shown by the insets
in Fig. 14(a), the hybridization states from the equivalent
hybridizations are 12-fold symmetrical. The nonequivalent
hybridizations B1 + B2 ⇒ E3 + E3 and B2 + B1 ⇒ E3 + E3

are quite weak because of the large energy difference of about
3.68 eV, and all of the E3 states are sixfold symmetrical.

If a vertical electric field is applied, an additional interlayer
potential difference �V should be taken into account. In this
respect, the D6d symmetry of the bilayer system is broken
into C6v . The previous E4 and E5 states in D6d point group
formed by the equivalent hybridizations become E2 and E1

states in C6v point group, and the E3 states from the nonequiv-
alent hybridizations become B1 and B2 states, as shown in
Figs. 14(b) and 14(c). The hybridization states from the equiv-
alent hybridizations will also lose the 12-fold symmetry. With
the increasing �V from 0 to 3.68 eV, the hybridizations of
A1 + A1, A2 + A2, and B1 + B2 weaken much because of the
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FIG. 14. The eigenenergy spectrum and their irreps of the 12 k-points model in reciprocal space with respect to C6 for (a) �V = 0 eV, and
(b) �V = 3.68 eV. The left and right black lines in each subplot denote the pairing states from two C6v subsystems, and the middle red lines
denote the hybridization states for D6d bilayer. The insets show the real-space electron density for the bonding B2 state, the antibonding B1

state, and two bonding E3 states in corresponding subplots. (c) The energy levels of the pairing and hybridization states as a function of �V .

enlarged energy difference, and the hybridizations of B2 +
B1, E1 + E1, and E2 + E2 weaken slightly at first and then
strengthen, as shown in Fig. 14(c). Therefore, the electric
field acts as a polarizer, which filters the hybridizations of
A1 + A1, A2 + A2, and B1 + B2 and allows the hybridizations
of B2 + B1, E1 + E1, and E2 + E2.

VII. PROPOSALS IDENTIFYING BAND
STRUCTURES EXPERIMENTALLY

Figure 15(a) shows the unfolded energy band structures
of graphene quasicrystal with a supercell of the periodic
15/26 approximant along the same k path of the primitive
unit cell of graphene. The dot lines with the dot size as
the value of spectral weight (i.e., pn′k = ∑

n,s | 〈φs
nk|ϕn′k〉 |2

[33]) represent the unfolded band structures, where ϕn′k is
the eigenstate of the quasicrystal with the band index n′ and
wave vector k, and φs

nk is the eigenstate of graphene with
the band index n and the layer index s. The color of the
dot line represents the interlayer hybridization strength �ε in
Eq. (18). We see again the two hybridization characteristics
in graphene quasicrystal: (i) the weak hybridization strength
inside low-energy area and (ii) the electron-hole asymmetrical
hybridization inside high-energy areas. Optical conductivity
with its real part corresponding to the optical absorption man-

ifests the interband transitions as a result of optical selection
rule [45], and hence is employed to determine the allowed
transitions of energy states with their symmetry properties.
By using the TB propagation method combined with the
Kubo-Greenwood formula (see Appendix F), the real part of
optical conductivity as a function of photon energy h̄ω is
calculated and shown in Figs. 15(b)–15(d) at μ = 0, −1.9,
and 1.67 eV, respectively, where the chemical potential μ

can be tuned by a gate voltage. In Fig. 15(b) at μ = 0 eV,
the optical conductivity of quasicrystal is almost the same as
that of graphene for about h̄ω < 2.5 eV, which indicates the
weak hybridization inside the low-energy area. In Figs. 15(c)
and 15(d) with μ = −1.9 and 1.67 eV, respectively, the op-
tical conductivity spectra show remarkably different energy
positions of absorption peaks, which arise from the interband
transitions between these hybridization states in negative and
positive high-energy areas, respectively. The zoomed-in im-
ages of unfolded band structures and corresponding optical
conductivity spectra in Fig. 15 are plotted in Fig. 16. The
irreps of bands at Q point are obtained and labeled near μ =
−1.9 and 1.67 eV, respectively. The optical selection rules of
D6d point group read as [45] A1 ↔ E1, A2 ↔ E1, B1 ↔ E5,
B2 ↔ E5, E1 ↔ E2, E2 ↔ E3, E3 ↔ E4, and E4 ↔ E5. Fol-
lowing the optical selection rules, the allowed transitions at
μ = 1.67 eV in Fig. 16(a) corresponding to the absorption
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FIG. 15. (a) The calculated unfolded band structures for dodecagonal graphene quasicrystal within a periodic 15/26 approximant, where
the color map denotes the interlayer hybridization strength 
ε, and black dashed lines stand for the band structures of the bottom and top
graphene monolayers. The real part of optical conductivity as a function of photon energy h̄ω at μ = 0 eV in (b), μ = −1.9 eV in (c), and
μ = 1.67 eV in (d), where the red and blue lines are for quasicrystal and graphene monolayer, respectively. The optical conductivity is in units
of σ0 = πe2

2h .

peaks are E4 ↔ E3 for peak 1, E4 ↔ E5 for peak 2, and both
E1 ↔ A1 and B2 ↔ E5 for peak 3 in Fig. 16(b). The allowed
transitions at μ = −1.9 eV in Fig. 16(c) corresponding to the
absorption peaks are E3 ↔ E4 for peaks 1, 2, and 3 because
of the special profiles of E3 and E4 bands and the splitting
of E4 band, both E2 ↔ E1 and E5 ↔ E4 for peak 4, and both
E5 ↔ B1 and A2 ↔ E1 for peak 5, and A2 ↔ E1 for peak 6

because of the special profiles and splitting of E1 band in
Fig. 16(d). Thus, the electron-hole asymmetrical hybridiza-
tion can be characterized by optical conductivity spectrum
experimentally. On the other hand, these hybridization-
generated band structures with their hybridization strengths
in graphene quasicrystal can also be measured by ARPES
[17,18].

FIG. 16. The zoomed-in images of unfolded band structures of Fig. 15 (a) near μ = 1.67 eV in (a) and near μ = −1.9 eV in (c) and
corresponding zoomed-in optical conductivity spectra here in (b) and (d), respectively.
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VIII. CONCLUSION

The constructed hybridization rules and classifications to-
gether with numerical results indicate that the D6h untwisted
BG only allows equivalent hybridization, the D6 twisted BG
allows equivalent and mixed hybridizations, and the D6d

graphene quasicrystalline permits equivalent and nonequiv-
alent hybridizations. The large energy difference between
Dirac bands from top and bottom layers renders a weak
hybridization strength near the Fermi level in twisted BG sys-
tems. The non-nearest-neighbor interlayer hoppings and the
wave-function phase difference between pairing states enable
the electron-hole asymmetry of hybridization strength. The
calculated optical conductivity spectra in graphene quasicrys-
talline manifest the hybridization strength characteristics. Our
results deeply explore how the interlayer states couple with
each other in these BG systems and shed light on the extrinsic
quasicrystals in van der Waals layered structures. In view
of the successful experimental synthesis of graphene qua-
sicrystal [17–25] and the state-of-art fabrication technology
of graphene-based nanostructures [46–48], we expect that the
hybridization selection rules and the electron-hole asymmetri-
cal hybridization effect are verified experimentally by optical
absorption spectrum and ARPES.
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APPENDIX A: DERIVATION OF INTERLAYER
HYBRIDIZATION SELECTION RULES

1. D6d graphene quasicrystals

The incommensurate 30◦ twisted BG has D6d point-group
symmetry in Table II. Due to the 30

◦
twist angle, the mirror re-

flections of the two layers have the relationships of σ t
v,i = σ b

d,i

and σ t
d,i = σ b

v, j with j = (i + 1) mod 3, where i, j = 0, 1, 2.
From the character table of C6v in Table I, one can find that
the projection operators of the two layers have the following
properties:

(i) For irrep ir ∈ {A1, A2, E1, E2}, the same characters for
σv,i and σd,i enable

P
Cb

6v

ir = P
Ct

6v

ir . (A1)

(ii) For irreps B1 and B2, the opposite characters for σv,i

and σd,i enable

P
Cb

6v

B1
= P

Ct
6v

B2
, P

Cb
6v

B2
= P

Ct
6v

B1
. (A2)

(iii) For irrep ir ∈ {A1, A2, B1, B2, E1, E2}, because the
characters of all operations are real numbers and an arbitrary
symmetry operation and its inverse operation are inside the

TABLE VI. Character table of C6. ε = e
π i
3 .

C6 E C6 C3 C2 C2
3 3C5

6

A 1 1 1 1 1 1
B 1 −1 1 −1 1 −1
E1 1 ε −ε∗ −1 −ε ε∗

1 ε∗ −ε −1 −ε∗ ε

E2 1 −ε∗ −ε 1 −ε∗ −ε

1 −ε −ε∗ 1 −ε −ε∗

same class, the projection operators satisfy[
P

Cb
6v

ir

]† = P
Cb

6v

ir ,
[
P

Ct
6v

ir

]† = P
Ct

6v

ir . (A3)

(iv) For irrep ir ∈ {A1, A2, B1, B2, E1, E2}, because C6v is
a subgroup of D6d , and hence all symmetry operations in C6v

commute with the Hamiltonian H , i.e,[
P

Cb
6v

ir , H
] = [

P
Ct

6v

ir , H
] = 0. (A4)

Using Eqs. (A1), (A3) and (A4) for irrep ir ∈ {A1, A2, E1, E2},
we write the hybridization matrix element Uir,ir′ as

Uir,ir′ = 〈
ϕb

ir

∣∣H ∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣PCb
6v

ir H
∣∣ϕt

ir′
〉

= 〈
ϕb

ir

∣∣HP
Cb

6v

ir

∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣HP
Ct

6v

ir

∣∣ϕt
ir′

〉
= δir,ir′Uir,ir′ . (A5)

Using Eqs. (A2)–(A4) for irreps B1 and B2, we write the
hybridization matrix elements as

UB1,ir′ = 〈
ϕb

B1

∣∣H ∣∣ϕt
ir′

〉 = 〈
ϕb

B1

∣∣PCb
6v

B1
H

∣∣ϕt
ir′

〉
= 〈

ϕb
ir

∣∣HP
Cb

6v

B1

∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣HP
Ct

6v

B2

∣∣ϕt
ir′

〉
= δB2,ir′UB1,ir′ , (A6)

and

UB2,ir′ = 〈
ϕb

B2

∣∣H ∣∣ϕt
ir′

〉 = 〈
ϕb

B2

∣∣PCb
6v

B2
H

∣∣ϕt
ir′

〉
= 〈

ϕb
ir

∣∣HP
Cb

6v

B2

∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣HP
Ct

6v

B1

∣∣ϕt
ir′

〉
= δB1,ir′UB2,ir′ . (A7)

The constraint equations of the hybridization matrix elements
in Eqs. (A5)–(A7) endow hybridization rules for these states
from the top and bottom layers, i.e., the hybridization selec-
tion rule in D6d graphene quasicrystal.

2. D6 twisted BG with 0◦ < θt < 30◦

The twisted BG with 0◦ < θt < 30◦ has D6 point-group
symmetry in Table III. The intersection between C6v and D6

is C6. From the character tables of C6v in Table I and C6 in
Table VI, one can find that, for 1D irrep Xi with i = 1, 2 and
X = A or B,

PC6
A

∣∣ϕb/t
Xi

〉 = 1

6

5∑
i=0

Ci
6

∣∣ϕb/t
Xi

〉 = δA,X

∣∣ϕb/t
Xi

〉
= (δA1,Xi + δA2,Xi )

∣∣ϕb/t
Xi

〉
,
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PC6
B

∣∣ϕb/t
Xi

〉 = 1

6

5∑
i=0

(−1)iCi
6

∣∣ϕb/t
Bi

〉 = δB,X

∣∣ϕb/t
Xi

〉
= (δB1,Xi + δB2,Xi )

∣∣ϕb/t
Xi

〉
. (A8)

Because C6 is a subgroup of D6, all symmetry operations in C6

commute with the Hamiltonian H , and hence the projection
operators PC6

A and PC6
B also commute with H , i.e.,[

PC6
A , H

] = [
PC6

B , H
] = 0. (A9)

In addition, from the character tables of C6, one can also find
that [

PC6
A

]† = PC6
A ,

[
PC6

B

]† = PC6
B . (A10)

Using Eqs. (A8)–(A10), we write the hybridization matrix
elements for 1D irreps Xi with X = A or B as

UAi,Xj = 〈
ϕb

Ai

∣∣H ∣∣ϕt
Xj

〉 = 〈
ϕb

Ai

∣∣PC6
A H

∣∣ϕt
Xj

〉
= 〈

ϕb
Ai

∣∣HPC6
A

∣∣ϕt
Xj

〉 = δA,XUAi,Xj

= (δA1,Xi + δA2,Xi )UAi,Xj ,

UBi,Xj = 〈
ϕb

Bi

∣∣H ∣∣ϕt
Xj

〉 = 〈
ϕb

Bi

∣∣PC6
B H

∣∣ϕt
Xj

〉
= 〈

ϕb
Bi

∣∣HPC6
B

∣∣ϕt
Xj

〉 = δB,XUBi,Xj

= (δB1,Xi + δB2,Xi )UBi,Xj . (A11)

For 2D irreps Ei with i = 1, 2, because all the characters of the
operation classes σv and σd in C6v and the operation classes C′

2
and C′′

2 in D6 are 0, the projection operators for irreps Ei in C6v

and D6 have the following properties:

P
Cb

6v

Ei
= P

Ct
6v

Ei
= PD6

Ei
,[

P
Cb

6v

Ei

]† = P
Cb

6v

Ei
= [

P
Ct

6v

Ei

]† = P
Ct

6v

Ei
,[

P
Cb

6v

Ei
, H

] = [
P

Ct
6v

Ei
, H

] = 0. (A12)

Using Eq. (A12) we write the hybridization matrix elements
for 2D irreps Ei as

UEi,Ej = 〈
ϕb

Ei

∣∣H ∣∣ϕt
E j

〉 = 〈
ϕb

Ei

∣∣PCb
6v

Ei
H

∣∣ϕt
E j

〉
= 〈

ϕb
Ei

∣∣HP
Ct

6v

Ei

∣∣ϕt
E j

〉 = δEi,EjUEi,Ej . (A13)

The constraint equations of the hybridization matrix elements
in Eqs. (A11) and (A13) endow hybridization rules for these
states from the top and bottom layers, i.e., the hybridization
selection rules in D6 twisted BGs.

3. D6h untwisted BG

The untwisted AA-stacked BG with θt = 0◦ has D6h

point-group symmetry in Table IV. The character projection

operators P
Cb

6v

ir and P
Ct

6v

ir of the bottom and top layers have three
properties.

(i) P
Cb

6v

ir and P
Ct

6v

ir should be the same because of θt = 0◦,
i.e.,

P
Cb

6v

ir = P
Ct

6v

ir . (A14)

(ii) Because the characters of all operations in C6v are real
numbers and an arbitrary symmetry operation and its inverse

operation are inside the same class, the projection operators
satisfy [

P
Cb

6v

ir

]† = P
Cb

6v

ir = [
P

Ct
6v

ir

]† = P
Ct

6v

ir . (A15)

(iii) C6v is a subgroup of D6h, and hence all symmetry
operations in C6v commute with the Hamiltonian H , i.e.,[

P
Cb

6v

ir , H
] = [

P
Ct

6v

ir , H
] = 0. (A16)

Using Eqs. (A14)–(A16), we write the hybridization matrix
element Uir,ir′ in untwisted BG as

Uir,ir′ = 〈
ϕb

ir

∣∣H ∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣PCb
6v

ir H
∣∣ϕt

ir′
〉

= 〈
ϕb

ir

∣∣HP
Cb

6v

ir

∣∣ϕt
ir′

〉 = 〈
ϕb

ir

∣∣HP
Ct

6v

ir

∣∣ϕt
ir′

〉
= δir,ir′Uir,ir′ . (A17)

The constraint equation of Uir,ir′ in Eq. (A17) endows hy-
bridization rules for these states from the top and bottom
layers, i.e., the hybridization selection rules in D6h untwisted
BG.

APPENDIX B: DETERMINATION OF IRREPS
OF HYBRIDIZATION STATES

1. D6d graphene quasicrystal

(i) For A1 + A1 ⇒ A1 + B2 hybridization with θ = 0, the
projection operators for A1 and B2 in D6d take the form as

PD6d
A1

= 1

2
PC6v

A1
+ 1

24

(
5∑

i=0

S2i+1
12 +

5∑
i=0

C′
2,i

)
,

PD6d
B2

= 1

2
PC6v

A1
− 1

24

(
5∑

i=0

S2i+1
12 +

5∑
i=0

C′
2,i

)
,

(B1)

with

S2i+1
12

∣∣φA1±
〉 = ±∣∣φA1±

〉
,

C′
2,i

∣∣φA1±
〉 = S12σd,i

∣∣φA1±
〉 = ±∣∣φA1±

〉
. (B2)

Using Eqs. (B1) and (B2), we have

PD6d
A1

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ± 1

2 |φ±〉,
PD6d

B2

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ∓ 1

2 |φ±〉. (B3)

Equation (B3) indicates that |φA1+ 〉 and |φA1− 〉 generated by
A1 + A1 hybridization have irreps A1 and B2, respectively, in
D6d point group.

(ii) For A2 + A2 ⇒ A2 + B1 hybridization with θ = 0, the
projection operators for A2 and B1 in D6d read as

PD6d
A2

= 1

2
PC6v

A2
+ 1

24

(
5∑

i=0

S2i+1
12 −

5∑
i=0

C′
2,i

)
,

PD6d
B1

= 1

2
PC6v

A2
− 1

24

(
5∑

i=0

S2i+1
12 −

5∑
i=0

C′
2,i

)
,

(B4)

with

S2i+1
12

∣∣φA2±
〉 = ±∣∣φA2±

〉
,

C′
2,i

∣∣φA2±
〉 = S12σd,i

∣∣φA2±
〉 = ∓∣∣φA2±

〉
. (B5)
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Using Eqs. (B4) and (B5), we have

PD6d
A2

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ± 1

2

∣∣φA2±
〉
,

PD6d
B1

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ∓ 1

2

∣∣φA2±
〉
. (B6)

Equation (B6) indicates that |φA2+ 〉 and |φA2− 〉 generated by
A2 + A2 hybridization have irreps A2 and B1, respectively, in
D6d point group.

(iii) For E1 + E1 ⇒ E1 + E5 hybridization with θ = ±π
3 ,

the projection operators for E1 and E5 in D6d read as

PD6d
E1

= 1

2
PC6v

E1
+ 2

√
3

24

(
S12 + S11

12 − S5
12 − S7

12

)
,

PD6d
E5

= 1

2
PC6v

E1
− 2

√
3

24

(
S12 + S11

12 − S5
12 − S7

12

)
,

(B7)

with (
S12 + S11

12

)∣∣φE1±
〉 = ±

√
3
∣∣φE1±

〉
,(

S5
12 + S7

12

)∣∣φE1±
〉 = ∓

√
3
∣∣φE1±

〉
. (B8)

Using Eqs. (B7) and (B8), we have

PD6d
E1

∣∣φE1±
〉 = 1

2

∣∣φE1±
〉 ± 1

2

∣∣φE1±
〉
,

PD6d
E5

∣∣φE1±
〉 = 1

2

∣∣φE1±
〉 ∓ 1

2

∣∣φE1±
〉
. (B9)

Equation (B9) indicates that |φE1+ 〉 and |φE1− 〉 generated by
E1 + E1 hybridization have irreps E1 and E5, respectively, in
D6d point group.

(iv) For E2 + E2 ⇒ E2 + E4 hybridization with θ = ± 2π
3 ,

the projection operators for E2 and E4 in D6d are expressed as

PD6d
E2

= 1

2
PC6v

E2
+ 2

24

2∑
i=0

(−1)i
(
S2i+1

12 + S11−2i
12

)
,

PD6d
E4

= 1

2
PC6v

E2
− 2

24

2∑
i=0

(−1)i
(
S2i+1

12 + S11−2i
12

)
,

(B10)

with (
S12 + S11

12

)∣∣φE2±
〉 = ±∣∣φE2±

〉
,(

S3
12 + S9

12

)∣∣φE2±
〉 = ∓2

∣∣φE2±
〉
,(

S5
12 + S7

12

)∣∣φE2±
〉 = ±∣∣φE2±

〉
. (B11)

Using Eqs. (B10) and (B11), we have

PD6d
E2

∣∣φE2±
〉 = 1

2

∣∣φE2±
〉 ± 1

2

∣∣φE2±
〉
,

PD6d
E4

∣∣φE2±
〉 = 1

2

∣∣φE2±
〉 ∓ 1

2

∣∣φE2±
〉
. (B12)

Equation (B12) indicates that |φE2+ 〉 and |φE2− 〉 generated by
E2 + E2 hybridization have irreps E2 and E4, respectively, in
D6d point group.

(v) For B1 + B2 ⇒ E3 + E3 and B2 + B1 ⇒ E3 + E3

nonequivalent hybridizations in Eq. (8), the projection oper-
ator for E3 in D6d reads as

PD6d
E3

= 2

24
(2E − 2C6 − 2C5

6 + 2C3 + 2C2
3 − 2C2). (B13)

Equation (B13) indicates PD6d
E3

is a combination of rotation
operations, and these rotation operations are actually also

symmetry operations of C6v . Thus, both |φb/t
B1

〉 and |φb/t
B2

〉 are

eigenstates of PD6d
E3

, i.e.,

PD6d
E3

∣∣φb/t
B1

〉 = ∣∣φb/t
B1

〉
,

PD6d
E3

∣∣φb/t
B2

〉 = ∣∣φb/t
B2

〉
. (B14)

Consequently, the states generated by B1 + B2 and B2 + B1

hybridizations must have ireep E3 in D6d point group.

2. D6 twisted BG with 0◦ < θt < 30◦

(i) For A1 + A1 ⇒ A1 + A2 hybridization, the projection
operator for A1 and A2 in point group D6 reads as

PD6
A1

= 1

12

5∑
i=0

Ci
6 +

2∑
i=0

C′
2,i +

2∑
i=0

C′′
2,i,

PD6
A2

= 1

12

5∑
i=0

Ci
6 −

2∑
i=0

C′
2,i −

2∑
i=0

C′′
2,i,

(B15)

where C′
2,i = σhR( θt

2 )σ b
v,iR

†( θt
2 ) and C′′

2,i = σhR( θt
2 )σ b

d,iR
†( θt

2 ).
Using Eq. (B15) and

Ci
6

∣∣φA1±
〉 = ∣∣φA1±

〉
,

σv,i

∣∣φA1±
〉 = ∣∣φA1±

〉
, σd,i

∣∣φA1±
〉 = ∣∣φA1±

〉
, (B16)

C′
2,i

∣∣φA1±
〉 = ±∣∣φA1±

〉
, C′′

2,i

∣∣φA1±
〉 = ±∣∣φA1±

〉
,

where σvR(θt/2) = R†(θt/2)σv is used, we have

PD6
A1

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ± 1

2

∣∣φA1±
〉
,

PD6
A2

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ∓ 1

2

∣∣φA1±
〉
. (B17)

Equation (B17) indicates that |φA1+ 〉 and |φA1− 〉 generated by
A1 + A1 hybridization have irreps A1 and A2, respectively, in
D6 point group.

(ii) For A2 + A2 ⇒ A2 + A1 hybridization, using Eq. (B15)
and

Ci
6

∣∣φA2±
〉 = ∣∣φA2±

〉
,

σv,i

∣∣φA2±
〉 = −∣∣φA2±

〉
, σd,i

∣∣φA2±
〉 = −∣∣φA2±

〉
,

C′
2,i

∣∣φA2±
〉 = ∓∣∣φA2±

〉
, C′′

2,i

∣∣φA2±
〉 = ∓∣∣φA2±

〉
, (B18)

we have

PD6
A2

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ± 1

2

∣∣φA2±
〉
,

PD6
A1

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ∓ 1

2

∣∣φA2±
〉
. (B19)

Equation (B19) indicates that |φA2+ 〉 and |φA2− 〉 generated by
A2 + A2 hybridization have irreps A2 and A1, respectively, in
D6 point group.

(iii) For B1 + B1 ⇒ B1 + B2 hybridization, the projection
operator for B1 and B2 in point group D6 reads as

PD6
B1

= 1

12

5∑
i=0

(−1)iCi
6 +

2∑
i=0

C′
2,i −

2∑
i=0

C′′
2,i,

PD6
B2

= 1

12

5∑
i=0

(−1)iCi
6 −

2∑
i=0

C′
2,i +

2∑
i=0

C′′
2,i. (B20)
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Using Eq. (B20) and

Ci
6

∣∣φB1±
〉 = (−1)i

∣∣φB1±
〉
,

σv,i

∣∣φB1±
〉 = ∣∣φB1±

〉
, σd,i

∣∣φB1±
〉 = −∣∣φB1±

〉
, (B21)

C′
2,i

∣∣φB1±
〉 = ±∣∣φB1±

〉
, C′′

2,i

∣∣φB1±
〉 = ∓∣∣φB1±

〉
,

we have

PD6
B1

∣∣φB1±
〉 = 1

2

∣∣φB1±
〉 ± 1

2

∣∣φB1±
〉
,

PD6
B2

∣∣φB1±
〉 = 1

2

∣∣φB1±
〉 ∓ 1

2

∣∣φB1±
〉
. (B22)

Equation (B22) indicates that |φB1+ 〉 and |φB1− 〉 generated by
B1 + B1 hybridization have irreps B1 and B2, respectively, in
D6 point group.

(iv) For B2 + B2 ⇒ B2 + B1 hybridization, using
Eq. (B20) and

Ci
6

∣∣φB2±
〉 = (−1)i

∣∣φB2±
〉
,

σv,i

∣∣φB2±
〉 = −∣∣φB2±

〉
, σd,i

∣∣φB2±
〉 = ∣∣φB2±

〉
,

C′
2,i

∣∣φB2±
〉 = ∓∣∣φB2±

〉
, C′′

2,i

∣∣φB2±
〉 = ±∣∣φB2±

〉
, (B23)

we have

PD6
B2

∣∣φB2±
〉 = 1

2

∣∣φB2±
〉 ± 1

2

∣∣φB2±
〉
,

PD6
B1

∣∣φB2±
〉 = 1

2

∣∣φB2±
〉 ∓ 1

2

∣∣φB2±
〉
. (B24)

Equation (B24) indicates that |φB2+ 〉 and |φB2− 〉 generated by
B2 + B2 hybridization have irreps B2 and B1, respectively, in
D6 point group.

(v) For equivalent hybridizations Ei + Ei ⇒ Ei + Ei with

i = 1, 2 in Eq. (11), because of P
Cb

6v

Ei
= P

Ct
6v

Ei
= PD6

Ei
in

Eq. (A12), |φEi+ 〉 and |φEi− 〉 generated by Ei + Ei hybridization
have irrep Ei in D6 point group.

3. D6h untwisted BG

(i) For A1 + A1 ⇒ A1g + A2u hybridization, the rela-
tionships between the character projection operator for
A1g and A2u in D6h and A1 in point group C6v read
as

PD6h
A1g

= 1

2
PC6v

A1
+ 1

24

(
2∑

j=0

C′
2, j +

2∑
j=0

C′′
2, j

)

+ 1

24

(
i + S3 + S2

3 + S6 + S5
6 + σh

)
,

PD6h
A2u

= 1

2
PC6v

A1
− 1

24

(
2∑

j=0

C′
2, j +

2∑
j=0

C′′
2, j

)

− 1

24

(
i + S3 + S2

3 + S6 + S5
6 + σh

)
, (B25)

where

C′
2, j = C2σv, jσh, C′′

2, j = C2σd, jσh,

S j
6 = C j

6σh, i = S3
6, S3 = S2

6, S2
3 = S4

6 . (B26)

Using Eqs. (B25) and (B26) and

PC6v

A1

∣∣φA1±
〉 = ∣∣φA1±

〉
,

σh

∣∣φA1±
〉 = ±∣∣φA1±

〉
, Ci

6

∣∣φA1±
〉 = ∣∣φA1±

〉
,

σv,i

∣∣φA1±
〉 = ∣∣φA1±

〉
, σd,i

∣∣φA1±
〉 = ∣∣φA1±

〉
, (B27)

we have

PD6h
A1g

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ± 1

2

∣∣φA1±
〉
,

PD6h
A2u

∣∣φA1±
〉 = 1

2

∣∣φA1±
〉 ∓ 1

2

∣∣φA1±
〉
. (B28)

Equation (B28) indicates that |φA1+ 〉 and |φA1− 〉 generated by
A1 + A1 hybridization have irreps A1g and A2u, respectively,
in D6h point group.

(ii) For A2 + A2 ⇒ A2g + A1u hybridization, the relation-
ships between the character projection operator for A2g and
A1u in D6h and A2 in point group C6v read as

PD6h
A2g

= 1

2
PC6v

A2
+ 1

24

(
−

2∑
j=0

C′
2, j −

2∑
j=0

C′′
2, j

)

+ 1

24

(
i + S3 + S2

3 + S6 + S5
6 + σh

)
,

PD6h
A1u

= 1

2
PC6v

A2
− 1

24

(
−

2∑
j=0

C′
2, j −

2∑
j=0

C′′
2, j

)

− 1

24

(
i + S3 + S2

3 + S6 + S5
6 + σh

)
. (B29)

Using Eqs. (B26) and (B29) and

PC6v

A2

∣∣φA2±
〉 = ∣∣φA2±

〉
,

σh

∣∣φA2±
〉 = ± ∣∣φA2±

〉
, Ci

6

∣∣φA2±
〉 = ∣∣φA2±

〉
,

σv,i

∣∣φA2±
〉 = − ∣∣φA2±

〉
, σd,i

∣∣φA2±
〉 = −∣∣φA2±

〉
, (B30)

we have

PD6h
A2g

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ± 1

2

∣∣φA2±
〉
,

PD6h
A1u

∣∣φA2±
〉 = 1

2

∣∣φA2±
〉 ∓ 1

2

∣∣φA2±
〉
. (B31)

Equation (B31) indicates that |φA2+ 〉 and |φA2− 〉 generated by
A2 + A2 hybridization have irreps A2g and A1u, respectively,
in D6h point group.

(iii) For B1 + B1 ⇒ B1u + B2g hybridization, the relation-
ships between the character projection operator for B2g and
B1u in D6h and B1 in point group C6v read as

PD6h
B1u

= 1

2
PC6v

B1
− 1

24

(
−

2∑
j=0

C′
2, j +

2∑
j=0

C′′
2, j

)

− 1

24

(
i − S3 − S2

3 + S6 + S5
6 − σh

)
,

PD6h
B2g

= 1

2
PC6v

B1
+ 1

24

(
−

2∑
j=0

C′
2, j +

2∑
j=0

C′′
2, j

)

+ 1

24

(
i − S3 − S2

3 + S6 + S5
6 − σh

)
. (B32)
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Using Eqs. (B26) and (B32) and

PC6v

B1

∣∣φB1±
〉 = ∣∣φB1±

〉
,

σh

∣∣φB1±
〉 = ± ∣∣φB1±

〉
, Ci

6

∣∣φB1±
〉 = (−1)i

∣∣φB1±
〉
,

σv,i

∣∣φB1±
〉 = ∣∣φB1±

〉
, σd,i

∣∣φB1±
〉 = −∣∣φB1±

〉
, (B33)

we have

PD6h
B1u

∣∣φB1±
〉 = 1

2

∣∣φB1±
〉 ± 1

2

∣∣φB1±
〉
,

PD6h
B2g

∣∣φB1±
〉 = 1

2

∣∣φB1±
〉 ∓ 1

2

∣∣φB1±
〉
. (B34)

Equation (B34) indicates that |φB1+ 〉 and |φB1− 〉 generated by
B1 + B1 hybridization have irreps B1u and B2g, respectively,
in D6h point group.

(iv) For B2 + B2 ⇒ B2u + B1g hybridization, the relation-
ships between the character projection operator for B1g and
B2u in D6h and B2 in point group C6v read as

PD6h
B2u

= 1

2
PC6v

B2
− 1

24

(
2∑

j=0

C′
2, j −

2∑
j=0

C′′
2, j

)

− 1

24

(
i − S3 − S2

3 + S6 + S5
6 − σh

)
,

PD6h
B1g

= 1

2
PC6v

B2
+ 1

24

(
2∑

j=0

C′
2, j −

2∑
j=0

C′′
2, j

)

+ 1

24

(
i − S3 − S2

3 + S6 + S5
6 − σh

)
. (B35)

Using Eqs. (B26) and (B35) and

PC6v

B1

∣∣φB2±
〉 = ∣∣φB2±

〉
,

σh

∣∣φB2±
〉 = ±∣∣φB2±

〉
, Ci

6

∣∣φB2±
〉 = (−1)i

∣∣φB2±
〉
,

σv,i

∣∣φB2±
〉 = −∣∣φB2±

〉
, σd,i

∣∣φB2±
〉 = ∣∣φB2±

〉
, (B36)

we have

PD6h
B2u

∣∣φB2±
〉 = 1

2

∣∣φB2±
〉 ± 1

2

∣∣φB2±
〉
,

PD6h
B1g

∣∣φB2±
〉 = 1

2

∣∣φB2±
〉 ∓ 1

2

∣∣φB2±
〉
. (B37)

Equation (B37) indicates that |φB2+ 〉 and |φB2− 〉 generated by
B2 + B2 hybridization have irreps B2u and B1g, respectively,
in D6h point group.

(v) For E1 + E1 ⇒ E1u + E1g hybridization, the relation-
ships between the character projection operator for E1u and
E1g in D6h and E1 in point group C6v read as

PD6h
E1u

= 1
2 PC6v

E1
− 2

24

(
2i + S3 + S2

3 − S6 − S5
6 − 2σh

)
,

PD6h
E1g

= 1
2 PC6v

E1
+ 2

24

(
2i + S3 + S2

3 − S6 − S5
6 − 2σh

)
.(B38)

In C6v monolayer a 2D E1 state is the eigenstate of C6 with the
corresponding eigenvalue e±iπ/3, i.e., C6|φE1± 〉 = e±iπ/3|φE1± 〉.
Using Eqs. (B26) and (B38) and

PC6v

E1

∣∣φE1±
〉 = ∣∣φE1±

〉
,

σh

∣∣φE1±
〉 = ±∣∣φE1±

〉
, (B39)

C j
6

∣∣φE1±
〉 = (e±iπ/3) j

∣∣φE1±
〉
,

we have

PD6h
E1u

∣∣φE1±
〉 = 1

2

∣∣φE1±
〉 ± 1

2

∣∣φE1±
〉
,

PD6h
E1g

∣∣φE1±
〉 = 1

2

∣∣φE1±
〉 ∓ 1

2

∣∣φE1±
〉
. (B40)

Equation (B40) indicates that |φE1+ 〉 and |φE1− 〉 generated by
E1 + E1 hybridization have irreps E1u and E1g, respectively,
in D6h point group.

(vi) For E2 + E2 ⇒ E2g + E2u hybridization, the relation-
ships between the character projection operator for E2g and
E2u in D6h and E2 in point group C6v read as

PD6h
E2g

= 1
2 PC6v

E2
+ 2

24

(
2i − S3 − S2

3 − S6 − S5
6 + 2σh

)
,

PD6h
E2u

= 1
2 PC6v

E2
− 2

24

(
2i − S3 − S2

3 − S6 − S5
6 + 2σh

)
. (B41)

In C6v monolayer a 2D E2 state is the eigenstate of C6

with the corresponding eigenvalue e±i2π/3, i.e., C6|φE2± 〉 =
e±i2π/3|φE2± 〉. Using Eqs. (B26) and (B41) and

PC6v

E2

∣∣φE2±
〉 = ∣∣φE2±

〉
,

σh

∣∣φE2±
〉 = ±∣∣φE2±

〉
, (B42)

C j
6

∣∣φE2±
〉 = (e±i2π/3) j

∣∣φE2±
〉
,

we have

PD6h
E2g

∣∣φE2±
〉 = 1

2

∣∣φE2±
〉 ± 1

2

∣∣φE2±
〉
,

PD6h
E2u

∣∣φE2±
〉 = 1

2

∣∣φE2±
〉 ∓ 1

2

∣∣φE2±
〉
. (B43)

Equation (B43) indicates that |φE2+ 〉 and |φE2− 〉 generated by
E2 + E2 hybridization have irreps E2g and E2u, respectively,
in D6h point group.

APPENDIX C: pz-ORBITAL TB MODEL

In the pz-orbital TB model, the hopping energy between
sites i and j is determined by [49]

t (ri j ) = n2Vppσ (|ri j |) + (1 − n2)Vppπ (|ri j |), (C1)

where n is the direction cosine of relative position vector ri j

with respect to the z axis. The Slater-Koster parameters Vppσ

and Vppπ read as

Vppπ (|ri j |) = −γ0e2.218(b−|ri j |)Fc(|ri j |),
Vppσ (|ri j |) = γ1e2.218(h−|ri j |)Fc(|ri j |),

(C2)

where γ0 and γ1 are 2.7 and 0.48 eV, respectively, b = 1.42 Å
is the nearest intralayer carbon-carbon distance, and Fc is a
smooth function

Fc(r) = (1 + e(r−0.265)/5)−1. (C3)

In our calculations, a large cutoff carbon-carbon distance for
the hopping energy is adopted up to 5 Å. In this pz-orbital-
based TB model, the van der Waals interaction has been
included in the interlayer hopping. The pz-orbital TB model
has been widely used to predict the electronic structures and
exotic states [17,27,33,50–56] in good accordance with exper-
imental results [17,51–53] in twisted BG systems.

125403-21



YU, WANG, KATSNELSON, LIN, AND YUAN PHYSICAL REVIEW B 105, 125403 (2022)

TABLE VII. The 10 interlayer hopping parameters in units of eV [57].

λ0 ξ0 κ0 λ3 ξ3 x3 λ6 ξ6 x6 κ6

0.310 1.750 1.990 −0.068 3.286 0.500 −0.008 2.727 1.217 1.562

APPENDIX D: WANNIER-ORBITAL TB MODEL

The Wannier-orbital TB model in twisted BG is proposed
by Fang and Kaxiras [57]. Compared with the pz-orbital
TB model, the Wannier-orbital TB model can reproduce the
electronic structure of DFT calculations on twisted BG ac-
curately even in higher-energy region without increasing the
computational cost. In this model, the intralayer hopping en-
ergies up to the eighth-nearest neighbors, which are −2.8922,
0.2425, −0.2656, 0.0235, 0.0524, −0.0209, −0.0148, and
−0.0211 eV from the first- to eighth-nearest neighbors, re-
spectively, are used to describe the Hamiltonian of graphene
monolayer. The interlayer hopping in a functional form de-
pending on both distance and orientation reads as [57]

t (r) = V0(r) + V3(r)[cos(3θ12) + cos(3θ21)]

+V6(r)[cos(6θ12) + cos(6θ21)], (D1)

where r is the in-plane part of the vector connecting two
sites, r = |r| describes the projected distance between two
Wannier functions, and θ12 and θ21 are the angles between the
projected interlayer bond and the in-plane nearest-neighbor
bonds, describing the relative orientation of the two Wannier
functions. The three radial functions in Eq. (D1) depend on 10
hopping parameters (r̄ = r/a) as follows:

V0(r) = λ0e−ξ0 r̄2
cos(κ0r̄),

V3(r) = λ3r̄2e−ξ3(r̄−x3 )2
, (D2)

V6(r) = λ6e−ξ6(r̄−x6 )2
sin(κ6r̄),

where related parameters are listed in Table VII.

APPENDIX E: DFT CALCULATIONS

The density functional theory (DFT) calculations are im-
plemented in SIESTAcode [58]. First, graphene monolayer
quantum dot, inside a 30 Å × 30 Å × 15 Å box avoiding
the interaction between adjacent images, is relaxed until the
maximal force less than 0.04 eV/Å under the GGA-PBE
functional and double-zeta polarization (DZP) basis sets. Sec-
ond, we perform the self-consistent calculations on the size-2
untwisted and twisted BG quantum dots inside a 30 Å × 30
Å × 30 Å box, where two relaxed monolayers are overlaid
in z direction with the same twist angle θt and the inter-

layer distance h = 3.35 Å as the value used in pz-orbital and
Wannier-orbital TB models. The optB88-vdW functional and
SZ bases are adopted during the self-consistent calculation.
Note that for all DFT calculations, the edge carbon atoms are
saturated by hydrogen atoms. Finally, the Hamiltonian (H)
and overlap (S) matrices are obtained with the help of SISL

tool [59]. Because the energy states inside low-energy area
have mainly the pz-orbital character, the components with pz

orbital involved are picked up. The eigenstates are obtained
by solving the generalized eigenequation Hφ = εSφ. After
separating the eigenstates of each layer according to the irrep
of C6v point group and the rotation C6, we obtain the interlayer
hybridization and overlap matrix elements.

APPENDIX F: TIGHT-BINDING PROPAGATION METHOD
FOR OPTICAL CONDUCTIVITY

The interband optical conductivity (i.e., not including the
Drude part at ω = 0) is calculated by using the Kubo formula
realized in TB propagation method [60], where the real part
of the optical conductivity matrix σ = σxx at temperature T
reads as

Reσxx(ω) = lim
ε→0+

e−h̄ω/kBT − 1

h̄ωA

∫ ∞

0
e−ετ sinωτ

× 2 Im〈 jxφ2(τ )| jxφ1(τ )〉dτ. (F1)

In Eq. (F1), A is the area of unit cell, and the wave functions
read as

|φ1(τ )〉 = e−iHτ/h̄[1 − f (H )]|φ0〉,
|φ2(τ )〉 = e−iHτ/h̄ f (H )|φ0〉,

(F2)

where |φ0〉 is the normalized initial state as a random superpo-
sition of pz orbitals at all sites, and f (H ) = 1/(e(H−μ)/kBT +
1) is the Fermi-Dirac distribution operator with μ as the chem-
ical potential. jx is the current operator along the x direction,
for a TB model, which reads as

jx = − ie

h̄

∑
i j

ti j (x j − xi )C
†
i Cj, (F3)

where x j − xi is the x component of the relative position
vector from site i to site j.
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