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Collective excitations and flat-band plasmon in twisted bilayer graphene near the magic angle
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Twisted bilayer graphene with tiny rotation angles have drawn significant attention due to the observation
of the unconventional superconducting and correlated insulating behaviors. In this paper, we employ a full
tight-binding model to investigate collective excitations in twisted bilayer graphene near the magic angle. The
polarization function is obtained from the tight-binding propagation method without diagonalization of the
Hamiltonian matrix. With the atomic relaxation considered in the simulation, both damped and undamped
plasmon modes are discovered near the magic angle under both room temperature and superconductivity
transition temperature. In particular, an undamped plasmon mode in narrow bands can be directly probed in
magic angle twisted bilayer graphene at superconductivity transition temperature. The undamped plasmon mode
is tunable with angles and gradually fades away with both temperature and chemical potential. In practice, the
flat bands in twisted bilayer graphene can be detected by exploring the collective plasmons from the measured
energy loss function.

DOI: 10.1103/PhysRevB.103.115431

I. INTRODUCTION

Twisted bilayer graphene (TBG), where one sheet of
graphene rotates relatively to the other, has recently attracted
extensive interest in the scientific community. In TBG, one de-
gree of freedom—the rotation angle—is introduced to tune its
electronic properties. Experimental investigations are focus-
ing on the properties of TBG with rotation angle 1.05◦—the
so-called magic angle [1], where a plethora of fantastic phe-
nomena, for instance, superconductivity [2,3], localized and
correlated states [4–8], charge-ordered states [9], and quantum
anomalous Hall effect [10], are constantly observed. Recently,
plasmons arising from interband collective excitations have
been detected by utilizing the scattering-type scanning near-
field optical microscope(s-SNOM) at TBG with 1.35◦ [11].
Unique plasmons, such as flat and chiral plasmons, emerge in
TBG [12–17]. Interestingly, flat plasmons detected in magic
angle systems could be used to mediate the unconventional
superconductivity [18,19] and give rise to the linear resistivity
observed in the experiment [20]. Consequently, the impor-
tance of electron-electron interactions provokes us to gain
insights into collective excitations in TBG, in particular, near
the magic angle.

The full tight-binding (TB) model [21–26] and simplified
continuum model [1,27–34] are widely used to investigate
the electronic properties of TBG. Within the frame of these
two models, the calculated properties of TBG can be in good
agreement with experimental ones [5,11,35–37]. In general, if
only low-energy properties are required, one could be prone
to adopt simplified continuum models since the TBG near
the magic angle contains over 10 000 atoms in its moiré
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unit cell. In this case, it is difficult to obtain eigenvalues and
corresponding eigenstates via the diagonalization of the huge
Hamiltonian matrix in the TB model. For instance, optical
conductivity and plasmonic properties of the TBG are studied
by using the continuum model without considering the atomic
relaxation [12,29,38]. As indicated in both experimental and
theoretical works, relaxation has non-negligible effects to the
electronic properties of the TBG, especially for relatively
small twist angles [24,31,34,39]. Therefore, after taking into
account the out-of-plane relaxation, the continuum model is
subsequently used to analyze plasmons in doped and undoped
TBG [11,13,40]. Nevertheless, continuum models used in
TBG are simply effective near small twist angles or at low en-
ergies. It is not a universal method to investigate a wide range
of angles and to consider the local electronic environment near
each atom. Moreover, the atomic relaxation implemented in
continuum models are derived from the TB results [23,25,31].
By using a tight-binding propagation method (TBPM) in the
frame of a full TB model, very large structures with the num-
ber of atoms up to hundreds of millions can be studied [41].
The TBPM is based on the numerical solution of the time-
dependent Schrödinger equation with additional averaging
over random superposition of basis states. More importantly,
the substrate effect, strain, physical defect, electric and mag-
netic fields can be easily implemented in our method [42–44]
to study how they affect plasmonic properties. Last but not
least, by combining the Kubo formula with TBPM, we could
explore plasmonic properties in huge samples over a large
energy range. Hence, as an atomic-scale approach, such a full
TB model without diagonalization is still meaningful to study
electronic and optical properties of TBG with a large range of
twist angles [45].

In this paper, beyond those aforementioned continuum
models, we systematically investigate the plasmonic proper-
ties of TBG near the magic angle by using the TBPM. We
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modulate the interlayer interaction of the relaxed TBG with
twist angle 1.35◦ to reproduce correctly the plasmons detected
in a recent experiment [11]. Therefore, the Kubo formula
implemented in the TBPM is accurate enough to investigate
the relaxed TBG with tiny rotation angles. Then, plasmon
spectra of TBG with rotation angles 1.35◦ and 1.05◦ for tem-
peratures at both 300 K and 1 K are calculated. We observe
that two collective plasmon modes are detected in TBG near
the magic angle, that is, a damped mode at the high energy
range and an undamped one in the low energy range. In the
full TB model, the low-energy plasmons that are attributed to
the collective excitations among the flat bands are sensitive to
the temperature and doping effects. Such undamped plasmon
is of keen interest for a bunch of applications, for instance,
quantum information science and high-Q resonators.

This paper is organized as follows. In Sec. II, the TB model
and computational methods are introduced, followed by the
validity of the Kubo formula implemented in the TBPM.
In Sec. III, the plasmon spectrums of TBG near the magic
angle are illustrated at both 300 K and 1 K, and also with
various chemical potentials. Finally, we give a summary and
discussion of our work.

II. METHODS

A. Full tight-binding model

A parameterized full TB model with the commensurate
approach to construct atomic structures of TBG has been used
to successfully reproduce experimental findings [36,37]. In
this paper, we also use the commensurate method to con-
struct TBG with different rotation angles θ [37]. In the TB
model, only pz orbitals are taken into account; we construct
the Hamiltonian of the TBG as

H =
∑

i

εi|i〉〈i| +
∑
〈i, j〉

ti j |i〉〈 j|, (1)

where |i〉 is the pz orbital located at ri, εi is the on-site energy
of orbital i, which is set to −0.814 eV to ensure that the Fermi
energy of TBG is at zero, and 〈i, j〉 is the sum over index i and
j with i �= j. According to the Slater-Koster (SK) formalism,
the hopping integral ti j , interaction between two pz orbitals
located at ri and r j has the form [46]

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ), (2)

where ri j = |r j − ri| is the distance between i and j sites, with
n as the direction cosine along the direction ez perpendicular
to the graphene layer. The SK parameters Vppπ and Vppσ fol-
low

Vppπ (ri j ) = −t0eqπ (1−ri j/d )Fc(ri j ),
(3)

Vppσ (ri j ) = t1eqσ (1−ri j/h)Fc(ri j ),

where d = 1.42 Å and h = 3.349 Å are the nearest in-plane
and out-of-plane carbon-carbon distances, respectively, t0 and
t1 are commonly reparameterized to fit different experimen-
tal results [25,26]. The parameters qσ and qπ satisfy qσ

h =
qπ

d = 2.218 Å−1 and the smooth function is Fc(r) = (1 +
e(r−rc )/lc )−1, in which lc and rc are chosen as 0.265 and 5.0 Å,
respectively.

B. Density of states

The density of states (DOS) for TBG is calculated by
using the TBPM [41] in the frame of a full TB model. The
TBPM makes it possible to obtain the electronic properties for
large-scale quantum systems, for instance, the DOS of TBG
with rotation angle θ down to 0.48◦[37] and of a dodecagonal
graphene quasicrystal [47,48],

D(E ) = 1

2πN

N∑
p=1

∫ ∞

−∞
eiEt 〈ϕp(0)|e−iHt |ϕp(0)〉dt, (4)

where |ϕp(0)〉 is one initial state with the random superposi-
tion of basis states at all sites N . In all the calculations, the
accuracy of the electronic properties can be guaranteed by
utilizing a large enough system with more than ten million
atoms. For instance, in all the calculations, the number of
the atoms in the supercell is ten million. The number of time
integration steps is 4096, which gives an energy resolution of
3.7 meV (15 eV/4096).

C. Dynamical polarization and dielectric function

Dynamical polarization can be obtained by combining the
Kubo formula [49] with TBPM as [50]

�K (q, ω) = −2

S

∫ ∞

0
dteiωt Im〈ϕ|nF (H )eiHt

× ρ(q)e−iHt [1 − nF (H )]ρ(−q)|ϕ〉, (5)

where nF (H ) = 1
eβ(H−μ)+1 is the Fermi-Dirac distribution oper-

ator, β = 1
kBT being T the temperature and kB the Boltzmann

constant, μ is the chemical potential, ρ(q) = ∑
i c†

i ciexp(iq ·
ri ) is the density operator, and S is the area of the unit
cell in TBG. The dynamical polarization function also can
be obtained from the Lindhard function in a full TB model
as [51]

�(q, ω) = − gs

(2π )2

∫
BZ

d2k
∑
l,l ′

nF(Ekl ) − nF(Ek′l ′ )

Ekl − Ek′l ′ + h̄ω + iδ

× |〈k′l ′|eiq·r|kl〉|2, (6)

where |kl〉 and Ekl are the eigenstates and eigenvalues of
the TB Hamiltonian Eq. (1), respectively, with l being the
band index, k′=k+q, δ → 0+, the integral is taken over the
whole Brillouin zone (BZ), and the sum is calculated over
all bands in the TB Hamiltonian Eq. (1). Note that, when the
rotation angle goes down to 3.14◦, the unit cell contains 1986
orbitals. The calculation of the polarization function from the
Lindhard function becomes a numerical task due to the huge
toll of diagonalization. On the contrary, in the Kubo formula
in Eq. (5), the exact diagonalization of the Hamiltonian is
unnecessary. So we can compute the dynamical polarization
for systems with tiny rotation angles [37]. The accuracy of
the Kubo formula will pave the way to further investigate
collective excitations of TBG near the magic angle in a full
TB model. Therefore, in the following, to check the validity of
the Kubo formula, we will compare the polarization function
obtained from the Kubo formula with the ones obtained from
the Lindhard function.
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FIG. 1. The imaginary part of the polarization function of rigid
TBG with θ = 6.01◦ computed from Kubo formula (solid line) and
from Lindhard function (dashed line) for T = 10 K (red line) and
T = 300 K (blue line). The inset is the Brillouin zone of TBG.
The wave vector q along �-K is |q|a = 0.02, a = 2.46 Å being the
lattice constant, and the chemical potential is μ = 0. The hopping
parameters t0 and t1 are 2.78 eV and 0.33 eV, respectively.

With the polarization function acquired from either Kubo
formula Eq. (5) or Lindhard function Eq. (6), the dielectric
function that describes the electronic response to extrinsic
electric perturbation can be written within the random phase
approximation as

ε(q, ω) = 1 − V (q)�(q, ω), (7)

in which V (q) = 2πe2/(εBq) is the Fourier component of
the two-dimensional Coulomb interaction, with εB being the
background dielectric constant. εB = 1 and εB = 3.03 repre-
sent the dielectric constant of the air and hexagonal boron
nitride (hBN), respectively, in our calculations. The energy
loss function can be expressed as

S(q, ω) = −Im(1/ε(q, ω)). (8)

To test the accuracy of the Kubo formula, we compare the
polarization functions with that obtained from the Lindhard
function at various angles and temperatures T. For twisted
bilayer graphene with a large rotation angle, for instance, θ =
21.78◦, polarization functions obtained from the Lindhard
function and the Kubo formula show remarkably quantitative
agreement (not shown here). Furthermore, for smaller angles,
the validity of the Kubo formula is tested in a smaller q that
is located in the first Brillouin zone, see the inset in Fig. 1.
The results from the Kubo formula are still in good agreement
with the ones from the Lindhard function. Moreover, the tem-
perature has an obvious impact on the polarization function,
especially, for the imaginary part in the low-energy range
which corresponds to the emergence of excitations at chemical
potential μ = 0 eV. As we can see from the green dashed
rectangle in Fig. 1, excitations are induced from ω/t0 = 0
at 300 K, whereas they are forbidden in the energy range
from ω/t0 = 0 to ω/t0 = 0.01 at 10 K. The difference could
be explained as a result of the modification of the electronic
distribution near the electric neutrality point at different tem-
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FIG. 2. Comparison of the polarization function computed by
using the full tight-binding model (solid lines) and the effective
continuum model (dashed lines) at T = 1 K and μ = 0. (a) The
imaginary part and (b) real part of polarizations for rigid TBG with
rotation angles 3.14◦ (red lines) and 1.61◦ (blue lines). The wave
vector q along �-K is |q|a = 0.02, a = 2.46 Å being the lattice
constant. The hopping parameters t0 and t1 are 2.78 eV and 0.33 eV,
respectively. The black dashed line indicates the zero of the real part
of dielectric function with the background dielectric constant εB = 1.
The data of the polarization from the continuum model are extracted
from Ref. [12].

peratures. These remind us that temperature can be a crucial
factor to tune the collective excitations in TBG.

The continuum model, as an effective low-energy model,
has been broadly utilized to explore collective excitations in
TBG [12,38,40]. In this part, the polarization functions from
a full TB model are compared to the ones obtained from the
continuum model in Ref. [12]. In the TB model, the Kubo
formula is used to obtain the polarizations for TBG with ro-
tation angle θ = 1.61◦ and θ = 3.14◦. The results in Fig. 2(b)
show that, as a whole, the polarization functions from the TB
resemble ones from the continuum model at a low energy
window, except for the minor difference of the positions and
magnitudes of the dips. As for the collective excitations, it
is not possible to observe a plasmon mode at a relative large
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FIG. 3. Reproduce the experimentally collective excitation for twisted bilayer graphene with twist angle 1.35◦. (a) The band structure
obtained from a tight-binding calculation. Similar to the result in Ref. [11], a band gap with the value of 100 meV is obtained by assuming that
interlayer hoppings of A sublattices and B sublattices are reduced to zero with hopping parameters t0 = 3.2 eV and t1 = 0.49 eV. (b) The loss
function S = −Im(1/ε) as functions of ω and |q| with μ = 0 and T = 300 K. The plasmon mode above 200 meV is the one observed in the
experiment [11].

rotation angle 3.14◦ without doping. It is verified from the real
part of polarization functions in both models where the curves
fail to cross the dashed black line in Fig. 2(b). For TBG with
θ = 1.61◦, when the dielectric function in Eq. (7) in the main
text satisfies Reε(q, ω) = 0, possible plasmon modes appear
in both continuum models and TB model calculations. All in
all, the accuracy of the Kubo formula is verified by comparing
the results with these obtained from the Lindhard function
shown in the main text of the Methods section and by the
excellent agreement of polarizations in the full TB model and
continuum model. Therefore, the Kubo formula in a full TB
model can be further used to explore the collective properties
of TBG near the magic angle.

III. PLASMONIC PROPERTIES OF TBG
NEAR MAGIC ANGLE

A. Reproduce the experimentally collective plasmon

In a recent experiment, an interband plasmon mode with
a value around 200 meV was reported in the charge-neutral
TBG near the magic angle [11]. The band structure of such
a system had a large band gap of 100 meV at the � point
between the flat band and the first excited band in the con-
duction or valence bands. Such an unusual band gap could
be explained by the extremely suppressed intrasublattice in-
terlayer interaction due to the electron-electron interaction or
extrinsic effects, for instance, the way samples are fabricated
and the hBN encapsulation [11]. In fact, in our investigation of
the magic angle in Appendix, the maximum band gap appears
in the magic angle samples and has a value around 40 meV. In
Ref. [11], the suppression of AA interlayer interactions can
be realized by reducing the interlayer coupling in the AA
regions u0 in a continuum model. Here, we reproduce the
large band gap by locally tuning the AA interlayer hopping
in the full TB model. In the superlattice cell with twist angle
θ = 1.35◦, all the atoms can be separated into two sublattices:
Sublattice A and sublattice B. By changing the interlayer
hopping parameter of intrasublattice A (intrasublattice B) to 0
(such approximation resembles the transformation of effective

AA and BB interlayer coupling u0 to zero in the continuum
model [31,40]), we obtain a band gap of 100 meV as shown
in Fig. 3(a). The band structure shows great agreement with
the one obtained from the continuum model in Ref. [11]. The
corresponding energy loss function Eq. (8) can be obtained
by using the Kubo formula Eqs. (5) and (7) in our full TB
model. As shown in Fig. 3(b), the loss functions are calculated
within wave vectors |q| that are accessible and detected in the
experiment [11]. The plasmon mode takes place with energy
near 210 meV, showing good agreement with the experimental
plasmon distribution in Ref. [11] and theoretical results ob-
tained from the continuum model with u0 = 0 in Ref. [40].
Note that in the result shown in Fig. 3, the lattice relaxations
are taken into account in the calculation (see details in Ap-
pendix A). The extreme consistency with the experimental
results verifies the accuracy and promising applications of our
method.

B. Plasmon spectrum near magic angle

Next, we utilize the Kubo formula in a full TB model
to theoretically explore collective excitations in TBG near
the magic angle. Two samples with different rotation angles
are created, one is with θ = 1.35◦ and the other is the ex-
perimentally detected magic angle θ = 1.05◦. We explicitly
discuss how to achieve the experimental magic angle θ =
1.05◦ with our full TB model in Appendix. The atomic re-
laxations are taken into account in the calculations. Plasmon
modes discovered from these excitations can be detected by
experimental technologies, such as S-SNOM, electron energy
loss spectroscopy, and near-field experiments. In experiments,
when plasmon modes with frequency ωp exist with low damp-
ing, the electron energy loss spectra possess sharp peaks at
ω = ωp. Here, the energy loss function −Im(1/ε(q, ω)) is
calculated with the dielectric function obtained from Eq. (7)
and the polarization function obtained from the Kubo formula
in Eq. (5). Plasmon spectrums of the TBG with two different
rotation angles 1.35◦ and 1.05◦ are illustrated in Fig. 4. The
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FIG. 4. The loss function −Im(1/ε) change with the frequency ω and wave vector q for relaxed TBG with twist angles 1.35◦ and 1.05◦ at
temperatures (a), (d) T = 300 K and (b), (e) T = 1 K, respectively. The possible interband transitions are indicated by red and green arrows
in the band structure for (c) θ = 1.35◦ and (f) θ = 1.05◦. The wave vector is along the �-K direction. The chemical potential is μ = 0 and the
background dielectric constant εB = 3.03 corresponds to the hexagonal boron nitride (hBN) substrate. The hopping parameters t0 = 2.8 eV
and t1 = 0.44 eV are utilized in the calculation and all the hopping terms follow the SK relations.

corresponding band structures of the two angles are also plot-
ted in Figs. 4(c) and 4(f), respectively.

For TBG with θ = 1.35◦, interband plasmon modes close
to 150 meV appear at both T = 300 K and 1 K, which are
attributed to the interband transitions from the valence band
near the Fermi energy to the conduction band located at
150 meV [red arrow in Fig. 4(c)]. These modes are similar
to the ones around 200 meV in Fig. 3 that originate from the
collective oscillations of electrons in the AA region of TBG
[11]. The 150 meV plasmon modes disperse within particle-
hole continuum in Figs. 5(a) and 5(b) with fast damping into
electron-hole pairs. Other interband plasmon modes have the
energy of 50 meV at temperature 1 K in Fig. 4(b), which
can be interpreted as collective transitions between near zero-
energy four bands [green arrow in Fig. 4(c)], and resemble
the ones obtained by the continuum model in undoped and
unrelaxed 1.30◦ TBG [12]. As we can see from Fig. 5(b), the
−Im�(q, ω) is zero around 50 meV energy, showing that the
50 meV plasmons avoid Laudau damping from the interaction
of collective excitations and single particle-hole transitions.
At room temperature, the long-lived 50 meV plasmon modes
split into two. One kind of mode has energy around 25 meV
and the other above 50 meV. Both of them are damping
plasmons with the increased wave vectors. Nevertheless, com-
pared to the remarkable variations of the plasmonic properties
with temperature, the main feature of the low energy plasmons
is still conserved from T = 0 to T = 300 K in the contin-
uum model [12]. As shown in Fig 5(a), in contrast to the
scenario at 1 K temperature, new single-particle transitions

simultaneously occur around the plasmonic energy. Obvi-
ously, at nonzero temperature, some states fluctuate around

FIG. 5. −Im�(q, ω) change with the frequency ω and wave
vector q for relaxed TBG with 1.35◦ and 1.05◦ at (a), (c) T = 300 K
and (b), (d) T = 1 K, respectively. The wave vector is along the
�-K direction. The chemical potential is μ = 0 and the background
dielectric constant εB = 3.03 corresponds to the hBN substrate. The
hopping parameters are t0 = 2.8 eV and t1 = 0.44 eV and all the
hopping terms follow the SK relations.
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the Fermi energy, leading to the conduction band partially
filled near the Fermi energy. Therefore, different from the
result at 1 K, extra single-particle intraband transitions are
induced at room temperature, giving rise to remarkable vari-
ations of the particle-hole continuum spectrum in Figs. 5(a)
and 5(b).

For TBG with θ = 1.05◦, the first obvious plasmon modes
in Fig. 4 locate at 100 meV at both T = 300 K and 1 K.
These plasmons are also coming from the interband transi-
tions illustrated in Fig. 4(f) (red arrow). The energy of the
plasmons is smaller than the one discovered in TBG with
θ = 1.35◦ since the van Hove singularity is located at the
energy around 100 meV. These modes are damping ones as
they cross the nonzero region in the particle-hole continuum
spectrum in Figs. 5(c) and 5(d), and it becomes clear with a
fine and flat shape with momentum larger than 0.2 nm−1. At
room temperature, different from the two splitting plasmons
in TBG with 1.35◦, the plasmons that stem from the collective
transitions among four flat bands vanish for TBG with 1.05◦
in Fig. 4(d). Besides, single-particle excitations are almost
not allowed in flat bands below 40 meV in Fig. 5(c), corre-
sponding to the experimental value of band gap between the
flat bands and the excited bands at the � point in Fig. 4(f).
When the temperature declines to the critical temperature
1 K at which the superconductivity can be detected in the
magic-angle system [2,3], a thin plasmon mode with energy
of 9 meV emerges and stretches to large q in Fig. 4(e), which
is contributed to the collective excitations among flat bands
(flat-band plasmon). Interestingly, unlike the low energy in-
terband plasmons in the 1.35◦ sample, this plasmonic mode is
contributed by both interband and intraband transitions even
when the chemical potential is zero. If we check the four flat
bands of the 1.05◦ sample in Fig. 9(b), the two valence bands
are distorted upward above zero energy at the � point, thus
giving rise to extra intraband transitions. Meanwhile, under-
neath the collective flat-band plasmon mode, the particle-hole
transitions arise with occupying a tiny energy region ranging
from 0 to 8 meV in Fig. 5(d). As a result, this plasmon mode
extends above the edge of this tiny energy zone and is free
from the Laudau damping.

The common feature of the plasmon modes in both cases
is that they are ultraflat over the whole q vectors, which is
in good agreement with the findings calculated by using the
continuum model [12]. However, the flat plasmon modes are
not explicitly predicted in some works, in which the plasmons
are derived from local optical conductivity [38,40]. These
collective interband transitions denoted by arrows in Figs. 4(c)
and 4(f) are related to the electronic excitations in AA stack-
ing regions of supercells in small angle TBG, as electrons
of the four flat bands near zero energy are localized in such
region. The higher energy plasmon mode can be changed at
two different angles due to the variation of the Van Hove
singularity with the twist angle, but rarely affected at differ-
ent temperature. On the contrary, temperature gives rise to
obvious transformation of the lower energy mode in both an-
gles. Furthermore, the low-energy updamped plasmon mode
emerging at the magic angle can extend from � to K point of
the boundary of the first Brillouin zone, in continuum model
[13], yet this mode gradually turns weak when q approaches
the K point (0.32/nm) in Fig. 4(e).

Furthermore, it deserves checking if this flat-band plasmon
is determined by the flatness of the four flat bands. As seen
from the loss function in Fig. 6(a), for TBG with three dif-
ferent rotation angles where flat bands appear as shown in
Fig. 9, the position of the first peak, corresponding to the
energy of the flat-band plasmon Ep, reaches the minimum
energy for TBG with the magic angle 1.05◦. The first peak
of the loss functions for TBG with the other two angles 1.08◦
and 1.02◦ have the same higher energy since their bandwidths
of flat bands are almost identical but both larger than that of
the magic angle. What enlightens us here is that the different
electronic responses to various bandwidths could support us
unveiling the flatness of flat bands in a large moiré system
where the calculations of the band structure becomes pro-
hibitively expensive.

In the previous parts, effects of the temperature on plas-
mons have been studied briefly in undoped TBG. How the
flat-band plasmons of TBG with 1.05◦ change with the tem-
peratures over a large range from 1 K to 300 K pushes us to
explore the loss functions under several temperatures, which is
plotted in Fig. 6(b). The temperature suppresses significantly
collective excitations between flat bands since the magnitude
of the first peak declines sharply with increased temperatures.
In Ref. [13], doped magic-angle TBG also has an undamped
plasmon mode with energy around 7 meV, which is similar
to aforementioned flat-band plasmons in our undoped case.
Both of them are contributed from intraband and interband
transitions. But how the doping level varies the flat-band
plasmon is unclear. Here, we further investigate the influence
of the chemical potential on flat-band plasmons in TBG with
magic angle in Fig. 6(c). When the flat band is doped to a
relatively low level of 2 meV and is partially filled, the first
peak of loss function is overlapped with the undoped one. The
flat-band plasmon is not affected by the low-level doping. For
a higher doping level, for instance, 6 meV, that reaches the
edge of flat bands, there is a weak electronic response with
the first peak fading away. The filled flat bands at doping
level 10 meV forbid all collective excitations from these flat
bands. In addition, doping TBG to 6 meV has an equivalent
effect to increasing temperature to 300 K in terms of the first
peak of loss function. Therefore, it is essential to keep a low
doping level and low temperature if one wishes to observe the
flat-band plasmon mode in TBG with the magic angle.

IV. SUMMARY AND DISCUSSION

In summary, collective excitations in TBG are explicitly in-
vestigated by utilizing the Kubo formula in the frame of a full
TB model. We mainly compare plasmonic properties for TBG
with angles 1.35◦ and 1.05◦ at different temperatures. For
the higher energy plasmon modes, they are conserved at both
300 K and 1 K and interact with single-particle electron-hole
transitions, giving rise to a quick damping rate. Interestingly,
undamped plasmon modes in the low energy range can be
well defined since they go through the zero regions of the
particle-hole spectrum. Increasing temperature from 1 K to
300 K turns the single undamped plasmon mode with lower
energy into two damped bands in 1.35◦ sample. At magic an-
gle 1.05◦, the undamped flat-band plasmon mode disappears
at 300 K but emerges at 1 K with the minimum energy due to
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FIG. 6. Loss function S(q, ω) = −Im(1/ε(q, ω)) of twisted bilayer graphene (a) near 1.05◦ at T = 1 K, (b) with θ = 1.05◦ at various
temperatures and (c) with magic angle 1.05◦ for different chemical potentials μ. The hopping parameters are the same as that in Fig. 5.

the narrowest bandwidth of flat bands. The angle dependence
of flat-band plasmons near 1.05◦ reflects different bandwidths
of flat bands. The comparison of doping and temperature
effects on the flat-band plasmonic peaks in loss function could
guide us to study the flatness of flat bands in experiments.
Lastly, in our simulation, the correct polarization functions are
calculated with q inside the Brillouin zone, whereas the local
field effect is supposed to be included when q approaches the
zone boundary [52,53]. The local field effects are discussed
in TBG with small twist angles and can be ignored safely
[12] but are still worth being explored in even larger systems
at the series of different magic angles. The many-body ef-
fect on the flat-band plasmons can be also explored via our
method and self-consistent Hartree approach in full TB model
[54].

Recently, it has been theoretically predicted that uncon-
ventional superconductivity in TBG is mediated by the purely
collective electronic modes [18,19]. Therefore, a deep under-
standing of collective excitations in TBG may also shed light
on the plasmonic superconductivity. Last but not least, the
quantum Doppler effect was theoretically predicted in the flat-
band plasmon [55]. Such significant plasmonic nonreciprocity
ωp(q) �= ωp(−q) proves that TBG with the magic angle is a
promising optoelectronics platform. For instance, it can be
utilized to develop optoelectronic devices with suppressed
backscattering [56,57]. More fundamental and practical ap-
plications refer to Ref. [55].
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APPENDIX: TUNE THE MAGIC ANGLE

Effects of lattice relaxation on electronic properties of
TBG near the magic angle have been theoretically investi-
gated by utilizing both the TB model and the continuum
model [23,24,31,34]. For instance, in a full TB model with
the hopping parameters t0 = 2.7 eV and t1 = 0.48 eV, the in-
plane relaxation tunes the magic angle from 1.20◦ to around
1.12◦ [23]. In this Appendix, we consider a full relaxation
(both out-of-plane and in-plane) effect on the band structure
of TBG around the magic angle, from which plasmons in
Sec. III are investigated in such a relaxed atomic structure.
Atomic relaxation of TBG is performed via classical simu-
lation package LAMMPS [58]. The intralayer and interlayer
interactions are simulated with long-rang carbon bond-order
potential [59] and Kolmogorov-Crespi potential [60], respec-
tively, which are implemented to show similar experimental
lattice [25]. We assume the relaxed samples keep the period
of the rigidly TBG. Effects of relaxation on bands of TBG
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FIG. 7. Band structure of full relaxed (black solid lines) and unrelaxed (red dashed lines) twisted bilayer graphene with twist angles
(a) θ = 1.05◦ and (b) θ = 1.20◦. The hopping parameters t0 and t1 are 2.7 eV and 0.48 eV, respectively.
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FIG. 8. Evolution of magic angle with different intralayer hopping or interlayer hopping parameters in the relaxed TBG. (a) The variation
of magic angle with different interlayer hopping parameters t1 and fixed t0 = 2.7 eV. The inset indicates the variation of bandwidth and band
gap near the magic angle 1.08◦ with a couple of hopping parameters t0 = 2.7 eV and t1 = 0.44 eV. (b) The value of magic angle changes with
different intralayer hopping parameter t0 and fixed t1 = 0.48 eV. The inset shows the change of bandwidth and band gap with various rotation
angles and fixed hopping parameters t1 = 0.48 eV and t0 = 2.9 eV.

with rotation angles 1.05◦ and 1.20◦ are displayed in Fig. 7.
The interaction parameters are t0 = 2.7 eV and t1 = 0.48 eV,
which are usually used in literature [22,23]. Apparently, the
relaxation separates four bands near the neutral point from
other excited valence and conduction bands. The opened band
gap at the � point (electron side) in the 1.05◦ system is
about 14 meV and the bandwidth (the difference between
� and K points in the conduction band) is measured to
be 20 meV. The magic angle is still at1.20◦, which has a
maximum band gap of 43 meV and minimum bandwidth
of 7 meV.

As expected from the experiment, in principle, the so-
called magic angle 1.05◦ possesses the maximum band gap
and the minimum bandwidth in Fig. 7. In this Appendix,
we try to reproduce the experimentally magic angle 1.05◦
in our TB model. The works that the magic angle can be
tuned by applying a pressure [3,61,62] enlighten us to shift
the magic angle via changing the interlayer and intralayer
hopping parameters. In this way, the magic angle can be
also tuned in kagome twisted bilayer by altering t1/t0 [63].
As shown in Fig. 8, the magic angle can be shifted from a
relatively large angle to a smaller one via gradually decreasing
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the interlayer hopping t1 or enhancing the intralayer hopping
t0. For instance, at two given sets of t0 and t1 in insets of
Figs. 8(a) and 8(b), which have the magic angle at 1.08◦
and 1.1◦, respectively, the bandwidth and band gap vary with
the twist angle and reach the extremum at the magic angle.
The two features are also identified as the definition of magic
angle.

We tune the intralayer and interlayer interaction in our
theoretical model to shift the four extremely flat bands from
1.20◦ to 1.05◦, close to which superconductivity is observed
in experiments [2]. Such a method is similar to the modulation
of the effective interlayer coupling and Fermi velocity in the
continuum model [62]. It shows that the flat band can be
shifted from 1.20◦ to 1.05◦ by enhancing the intralayer inter-
action, t0 from 2.7 eV to 2.8 eV and weakening the interlayer
interaction, t1 from 0.48 eV to 0.44 eV. For TBG with different
values of magic angles, the bandwidths and band gaps are dif-
ferent, which results in varied energy positions of the flat-band
plasmon. The band structures and electronic DOS for TBG
near 1.05◦ are plotted in Fig. 9, where the flattest band and the

largest magnitude of DOS peak located at the Dirac point are
at the angle θ = 1.05◦. The sharp peak of DOS is conserved
at angles 1.08◦ and 1.02◦, which are very close to the magic
angle θ = 1.05◦. The bandwidth smaller than 10 meV also
appears in these two angles. Therefore, the conception of the
single magic angle can be broaden toward magic angles [34].
Besides, the electronic-side band gap 42 meV and bandwidth
9 meV of flat bands in TBG with θ = 1.08◦ are consistent
with experimental values. Apart from these three magic angles
with flat bands and corresponding Dirac peak in DOS at the
neutral point, the band structure and DOS of the TBG with
1.35◦ are also obtained, showing the absence of a Dirac peak
at the neutral point and of the flat band. In our TB result, the
band gap is underestimated compared to the one in experi-
ments [11] if only relaxation effects are taken into account.
A parameterized TB model with relaxed atomic structures,
which is able to reproduce key features of band structure near
the magic angle, can be used to further explore collective
behaviors of electrons in the main text, such as plasmons near
the magic angle.
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