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We study electron-phonon interaction and related transport properties of nodal-line semimetal ZrSiS using
first-principles calculations. We find that ZrSiS is characterized by a weak electron-phonon coupling on the order
of 0.1, which is almost energy independent. The main contribution to the electron-phonon coupling originates
from long-wavelength optical phonons, causing no significant renormalization of the electron spectral function.
At the charge neutrality point, we find that electrons and holes provide a comparable contribution to the scattering
rate. The phonon-limited resistivity calculated within the Boltzmann transport theory is found to be strongly
direction-dependent with the ratio between out-of-plane and in-plane directions being ρzz/ρxx ∼ 7.5, mainly
determined by the anisotropy of carrier velocities. We estimate zero-field resistivity to be ρxx ≈ 12 μ� cm at
300 K, which is in good agreement with experimental data. Relatively small resistivity in ZrSiS can be attributed
to a combination of weak electron-phonon coupling and high carrier velocities.
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I. INTRODUCTION

Over the past decade, a novel class of three-dimensional
(3D) materials known as Dirac and Weyl semimetals has
been discovered [1–4]. These materials are often referred to
as 3D graphene analogs because their electronic properties
are similar to the properties of two-dimensional graphene
[5,6]. The electronic structure of 3D semimetals allows for
the existence of gapless electronic excitations that are symme-
try protected [7]. Unlike conventional semimetals, 3D Dirac
materials demonstrate linear dispersion of the electronic spec-
trum forming a conical shape, similar to graphene. This gives
rise to a large variety of unusual properties, being the subject
of intensive research [8,9].

A special case of Dirac semimetals is the so-called nodal-
line Dirac semimetals [10], where the set of Dirac points
forms a continuous (nodal) line in the electronic band struc-
ture. Nodal-line semimetals host a large density of Dirac
fermions that are favorable for the appearance of electron
correlation effects [11]. Typical representatives of this class
of materials are zirconium-based layered compounds with the
chemical formula ZrSiX , where X is a group-VI element:
S, Se, or Te. Among the ZrSiX family of compounds, Zr-
SiS is an especially prospective material with a wide en-
ergy range of linearly dispersing bands reaching 2 eV. This
makes this material an excellent candidate for studying Dirac
fermions. ZrSiS has been extensively studied experimen-
tally, demonstrating exotic physics and a rich spectrum of
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remarkable properties [12–24]. Among them are the strongly
nested Fermi surface [12,13], strong Zeeman splitting [22],
topologically nontrivial states [14–16], high carrier mobility
[17,18], frequency-independent optical conductivity [23], and
unconventional mass enhancement of quasiparticles near the
nodal line as indicated by quantum oscillations measured
in high magnetic fields [24]. The latter finding suggests the
importance of many-body effects, which may contribute to
the realization of exotic quantum states in this material.
Particularly, it has been predicted that ZrSiS is a candidate
for the formation of excitonic pairing [25], whereas its coun-
terpart ZrSiSe is predicted to host unconventional (d-wave)
superconductivity [26].

Despite a large number of experimental studies on ZrSiS,
which include angle-resolved photoemission spectroscopy,
scanning tunneling microscopy, optical probes, and high-field
magnetotransport measurements, physical mechanisms be-
hind the observable properties are still largely unclear. More-
over, some experimental studies report conflicting results, for
instance, on zero-field resistivity [18,22,27,28], which is an
issue to be resolved. Theoretical description of ZrSiS available
in the literature is mostly limited to ground-state electronic
structure calculations within density functional theory. Only
a little attention from the theory side has been given to the
problem of unusual optical properties [29,30] and many-body
effects in ZrSiS [25,26]. The nature of intrinsic transport
properties as well as mechanisms responsible for high carrier
mobility are not fully understood. The problem of lattice
dynamics and electron-phonon coupling, which is supposed
to be the main factor determining charge carrier scattering at
room temperature, has only scarcely been addressed [31–34].
At the same time, the scattering behavior (e.g., its doping
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dependence) in nodal-line semimetals is expected to be es-
sentially different from that in conventional (semi-)conductors
[35]. An in-depth microscopic understanding of the origin
of the electron scattering and related phenomena in nodal-
line semimetals constitutes an important step toward practical
utilization of these materials.

In this paper, we perform a systematic first-principles study
of electron-phonon interactions and analyze its influence on
the transport properties in bulk ZrSiS. We find that ZrSiS
is characterized by a weak electron-phonon interaction with
the coupling constant λ ∼ 0.1, being almost independent of
charge doping. The dominant contribution to the coupling
originates from long-wavelength optical phonons. The elec-
tronic spectrum undergoes no significant renormalization in
the presence of electron-phonon interaction and is only dis-
tinguished by a finite linewidth. Around the charge neutrality
point, electrons and holes in ZrSiS show similar contribution
to the scattering rate, which exhibits a pronounced V shape as
a function of energy. The phonon-limited resistivities calcu-
lated within the semiclassical Boltzmann theory demonstrate
strong anisotropy between the in-plane and the out-of-plane
crystallographic directions with the ratio ρzz/ρxx ∼ 6.3–8.8
depending on the doping level. Transport anisotropy is at-
tributed to an essentially anisotropic carrier velocities rather
than to the anisotropic electron-phonon scattering. The in-
plane resistivity is estimated to be ρxx ≈ 12 μ� cm at 300 K,
being in good agreement with experimentally measured val-
ues of 14–16 μ� cm [15,16,18,36]. Relatively small resistiv-
ity can be attributed to weak electron-phonon coupling and
high carrier velocities in ZrSiS.

The rest of the paper is organized as follows. In Sec. II,
we describe basic theory and provide computational details.
In Sec. III, our results and a related discussion are presented.
In Sec. IV, we summarize our findings and conclude the
paper.

II. THEORY AND COMPUTATIONAL DETAILS

In the semiclassical Boltzmann theory [37,38], the αα

component of the conductivity tensor has the form

σαα = −e2

V

∑
nk

τnk
[
vα

nk

]2 ∂ fnk

∂εnk
, (1)

where V is the unit cell volume, vα
nk is the α component

of the group velocity for band n and wave-vector k, εnk
is the corresponding electron energy, fnk = {1 + exp[(εnk −
εF )/kBT ])}−1 is the electron occupation factor, and τnk is the
momentum-dependent scattering relaxation time. The latter
can be related to the inverse linewidth of band n at wave-
vector k,

1

τnk
= 2

h̄
Im(
nk ), (2)

which is expressed here via the imaginary part of the electron
self-energy Im(
nk ) and known as the self-energy relaxation
time approximation [39]. In the presence of electron-phonon
coupling, the self-energy can be calculated within the Migdal
approximation [40], leading to the following expression on the

real frequency axis [41]:


nk(ω, T ) =
∑
mν

∑
q

|gmn,ν (k, q)|2

×
[

nqν (T ) + fmk+q(T )

ω − (εmk+q − εF ) + ωqν + iδ

+ nqν (T ) + 1 − fmk+q(T )

ω − (εmk+q − εF ) − ωqν + iδ

]
, (3)

where nqν is the occupation factor of a phonon with wave-
vector q, branch index ν, and frequency ωqν , and

gmn,ν (k, q) =
(

h̄

2m0ωqν

)1/2

〈ψmk+q|∂qνV |ψnk〉 (4)

is the electron-phonon matrix element. Here, ∂qνV is the
derivative of the self-consistent electronic potential, and ψnk
is the Bloch function for band n and wave-vector k.

For a single phonon mode ν with wave-vector q, it is con-
venient to define a dimensionless electron-phonon coupling
averaged over the Fermi-surface states with the density of
states (DOS) N (εF ) = ∑

nk δ(εnk − εF ) as

λqν = 1

N (εF )ωqν

∑
mn,k

|gmn,ν (k, q)|2

× δ(εnk − εF )δ(εmk+q − εF ), (5)

from which one can estimate the phonon linewidth as
Im[�qν] = πN (εF )λqνω

2
qν . From Eq. (5), one can also obtain

a spectral representation of the electron-phonon interaction,
known as the Eliashberg spectral function,

α2F (ω) = 1

2

∑
qν

ωqνλqνδ(ω − ωqν ). (6)

Density-functional theory (DFT) electronic structure cal-
culations and structural optimization were performed in this
paper by means of the plane-wave QUANTUM ESPRESSO (QE)
code [42], using norm-conserving pseudopotentials [43,44].
Exchange and correlation were treated within the local den-
sity approximation (LDA) [45]. The kinetic-energy cutoff
for plane waves was set to 70 Ry, the Brillouin zone was
sampled with a (14 × 14 × 6) Monkhorst-Pack k-point mesh
[46], proved to be sufficient to achieve numerical accuracy.
The crystal structure was fully relaxed with a threshold
of 1 × 10−12 eV for total energies and 1 × 10−12 eV/Å for
forces. The electron-phonon matrix elements were calculated
using density functional perturbation theory (DFPT) [47] as
implemented in QE. The Brillouin zone for phonons within
DFPT was sampled by a (7 × 7 × 3) q-point mesh, and the
self-consistency threshold of 1 × 10−16 eV was used. Spin-
orbit coupling was not taken into account in the calculations,
which is justified by its marginal influence on vibrational
and electronic properties of ZrSiS at temperatures considered
in this paper, which is demonstrated in the Supplemental
Material (SM) [48]. In order to achieve numerical accuracy
of the Brillouin-zone integrals related to the electron-phonon
coupling, we used an interpolation scheme based on the
maximally localized Wannier functions [41,49]. To this end,
we focused on low-energy electronic states of ZrSiS and
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FIG. 1. Schematic of the ZrSiS crystal structure. Gray, cyan, and
yellow balls correspond to Zr, Si, and S atoms, respectively. Depicted
supercell contains 3 × 3 × 2 = 18 unit cells.

constructed a minimal tight-binding (TB) model described by
a (3 × 3) Hamiltonian matrix, which reproduces the electronic
states in the vicinity of the Fermi energy with sufficient accu-
racy. The electronic self-energy was calculated on a (144 ×
144 × 32) k-point and (32 × 32 × 12) q-point mesh, whereas
different meshes were used to calculate the electron-phonon
coupling strength and the Eliashberg function: (384 × 384 ×
32) and (24 × 24 × 8), respectively. A smearing parameter of
σ = 5 meV was used for the Fermi surface averaging over
the electron states. No artificial smearing effects are expected
because the condition σ < kBT was fulfilled in all cases
considered. The Eliashberg function was calculated using a
phonon smearing of 0.05 meV. The convergence behavior
of the Brillouin-zone integrals with respect to the density
of k- and q-point meshes is shown in the SM [48]. All the
computational parameters used in this paper were checked to
be sufficient to reach numerical convergence. The Wannier
functions were constructed by means of the WANNIER90 code
[50], and the interpolation was performed within the EPW

package [51]. The XCRYSDEN package was used to generate
the crystal structure and the Fermi surface [52].

III. RESULTS AND DISCUSSION

ZrSiS is a layer crystal with tetragonal symmetry (point-
group D4h), schematically shown in Fig. 1. Each layer of
ZrSiS is composed of Si atoms sandwiched between Zr and
S atoms, and the unit cell contains six atoms. The lattice
parameters optimized within the LDA read a = 3.47 and
c = 7.92 Å. In Fig. 2(a), we show the band structure of
ZrSiS and the corresponding electron DOS calculated using
DFT-LDA and a three-band TB model constructed from the
Wannier functions as described in Sec. II. A three-band model
constitutes a minimal model for a reliable description of the
electronic states in the vicinity of the Fermi energy. On the
other hand, it appears as an optimal choice between the com-
putational efficiency and the numerical accuracy within the
Wannier interpolation scheme utilized in this paper. The elec-
tronic structure of ZrSiS features linearly dispersing bands in
the vicinity of the Fermi energy, crossing each other along
multiple directions in the Brillouin zone, forming a set of
continuous nodal lines (loops) in k space. Above the Fermi
energy, there is a parabolic band at the � point as well as
along the Z–R direction, which is expected to influence the
charge carrier scattering in ZrSiS under electron doping and
in the presence of tensile strain applied along the stacking
direction [30]. The constructed TB model allows for a reliable
description of the DFT bands in the energy range from −0.2 to
+0.2 eV around the Fermi energy as well as their derivatives
[see Fig. 6(b) below]. Unlike graphene, ZrSiS exhibits a
finite DOS at the Fermi energy, being a consequence of the
continuous nodal line. Also, the position of the nodal line
does not coincide with the Fermi energy, making the electron
and hole states in ZrSiS not perfectly symmetric. The Fermi
surface of ZrSiS is formed by four electron and four hole
pockets, connected to each other at specific points on the
kz = ±π/c and kz = 0 plane as is shown in Fig. 3.

The phonon dispersion and the corresponding DOS are
shown in Fig. 2(b), being in agreement with earlier studies
[31–34]. One can see three acoustic branches with the linear
dispersion ωq ∼ |q| and a series of optical branches ranging
from 10 to 50 meV. Since the system is anisotropic, the
dispersion of acoustic modes is strongly dependent on phonon
polarization. For phonons propagating in the [001] direction
(z), the sound velocity vz

s = ∂ω(q)/∂qz|q=0 is estimated to be
6.8 and 4.3 km/s for out-of-plane and in-plane polarizations,
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FIG. 2. (a) Band structure and electronic DOS of ZrSiS calculated using full DFT and a three-band TB model as described in the text.
(b) Phonon dispersion and the corresponding DOS. A relative phonon linewidth Im[�qν] is shown in the red color (not to scale). The dashed
lines are the equilibrium phonon distribution function nω(T ) = (eω/T − 1)−1 shown for T = 100 and 300 K.
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FIG. 3. Calculated Fermi surface of ZrSiS. The red and blue
pockets denote valence (hole) and conduction (electron) states, re-
spectively. The black solid lines mark boundaries of the Brillouin
zone. The green dashed lines connect high-symmetry points.

respectively. Along the [100] propagating direction, these
values are roughly 10% higher. The optical phonons in ZrSiS
are characterized by a number of flat branches, which give rise
to several peaks (van Hove singularities) in phonon DOS. In
the energy region between 20 and 25 meV, there are two sharp
peaks originating from low-energy optical branches associ-
ated mainly with Zr vibrations. These branches are expected
to provide a significant contribution to phonon population
at room temperature as can be deduced from the phonon
distribution function depicted along with DOS in Fig. 2(b).
In the same figure, we also show a broadening of phonon
lines shown together with the noninteracting dispersion. The
maximum linewidth is observed for optical phonons with
small wave vectors but with energies ωqν > 30 meV, indicat-
ing a relatively small population of interacting states at room
temperature and below.

We now turn to the electron-phonon coupling in ZrSiS.
In Fig. 4(a), we show the electron-phonon coupling strength
λq resolved over the Brillouin zone. One can see that the
main contribution corresponds to the coupling with long-
wavelength phonons, maximizing λq around the � point. This
behavior can be attributed to the structure of the Fermi surface,
which exhibits elongated electron and hole pockets (Fig. 3),
favoring transitions with small momentum transfer. Although
one may expect strong nesting effects from the diamond-
shaped Fermi surface [15], these effects are not pronounced
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∫
dω ω−1α2F (ω) calculated for undoped ZrSiS (εF = 0). (c) Total

coupling constant λ∗ ≡ λ(ωmax) calculated as a function of the Fermi
energy εF .
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FIG. 5. Electron spectral function A(k, ε) renormalized by the
coupling with phonons in ZrSiS shown for different Fermi energies
at T = 100 and 300 K.

in the electron-phonon coupling, indicating small interaction
weight at the corresponding momentum transfers. Figure 4(b)
shows the Eliashberg function of ZrSiS, which closely follows
phonon DOS, suggesting weak electron-phonon coupling and
the absence of any significant many-body renormalization. In-
deed, the integrated electron-phonon coupling constant λ∗ =∑

q λq ≈ 0.14 is small, leading to a negligible mass en-
hancement m∗/m = 1 + λ∗. The coupling constant is weakly
dependent on the Fermi energy as is shown in Fig. 4(c). It is
worth noting that similar small values for λ have been recently
reported in Ref. [34] yet obtained from a simplified model
taking only one optical phonon mode into account focusing
on the surface states of ZrSiS.

Weak electron-phonon coupling is favorable in terms of
charge carrier transport as it generally ensures a low scattering
rate. On the other hand, weak coupling suppresses phonon-
mediated electron pairing, playing a key role in conventional
superconductivity. The calculated electron-phonon coupling
constant λ allows one to make a rough estimate of the
superconducting transition temperature within the Allen and
Dynes formula [53]. Based on this estimation, we conclude
that phonon-mediated superconductivity is unlikely in ZrSiS
even on the microkelvin temperature scale. This finding is
consistent with the experiments, observing no superconduc-
tivity down to 2 K even at high pressure up to 20 GPa [27].
We note that this does not exclude other pairing mechanisms
(e.g., excitonic pairing), which may become relevant at low
enough temperatures [26].

Let us now discuss the influence of the electron-phonon
interaction on the electronic structure. Figure 5 shows dop-
ing dependence of the electron spectral function calculated
in the presence of electron-phonon coupling in ZrSiS for
two characteristic temperatures: T = 100 and 300 K. As
is expected from small electron-phonon coupling strength,
the spectral function closely resembles noninteracting bands
shown in Fig. 2. Apart from the finite linewidth, one can see
prominent kinks in the band structure, clearly distinguishable
at T = 100 K. Rigid-shift doping does not lead to any sig-
nificant modification of the spectral function, despite some
variation of the electron-phonon coupling strength [Fig. 4(c)].
In the relevant energy region, the linewidth is essentially
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FIG. 6. (a) Energy dependence of the averaged scattering rate
calculated for holes and electrons in charge neutral ZrSiS (εF = 0) at
T = 100 and 300 K. The inset shows temperature dependence of the
scattering rate for ε = εF . (b) Energy-resolved x and z components
of the carrier velocity calculated as v̄α = √〈v2

α〉, where 〈· · · 〉 denotes
the Fermi-surface average. The dashed lines in (b) show the result
obtained using full DFT Hamiltonian, i.e., without constructing a TB
model.

independent of k, showing no anomalies near the nodal lines.
This indicates that electron-phonon scattering in ZrSiS is
similar along different directions. In the vicinity of the Fermi
energy, the imaginary part of the self-energy Im[
nk(ω, T )] at
T = 300 K varies between 10 and 25 meV depending on the k
point and band index n, whereas, at T = 100 K, the variation
reduces to 0.7–1.5 meV.

The electronic self-energy resolved over the Brillouin zone
allows us to restore the energy dependence of the electron and
hole scattering rates. To this end, we average τ−1

nk given by
Eq. (2) over the states with a constant energy as

〈τ−1〉 = 1

N (ε)

∑
nk

τ−1
nk δ(εnk − ε), (7)

where N (ε) is the electron DOS at energy ε. We note that,
generally speaking, ε in Eq. (7) does not have the meaning
of the Fermi energy because τ−1

nk being a function of k is
determined by the Fermi energy [see Fig. 5]. In Fig. 6(a),
we show the averaged scattering rate calculated separately for
holes and electrons in ZrSiS as a function of energy for T =
100 and 300 K. For the temperatures considered, we observe
similar energy dependence with the main difference being the
magnitude of the scattering rate. The hole and electron curves
are almost symmetric and cross near the zero energy. Thus,
electrons and holes provide nearly equal contribution to the
scattering rate, which is not surprising because both states
have comparable weight at the Fermi surface [see Fig. 3].
It is interesting to note that the electron-hole symmetry in
ZrSiS can be broken by uniaxial strain applied along the
[001] direction [30]. The energy dependence of the scattering
rate exhibits a monotonic behavior, which is almost linear at
T = 300 K but shows small deviations in the vicinity of the
zero energy at T = 100 K. Overall, the energy dependence
resembles electron DOS, which is not unusual for the case
of weak electron-phonon coupling. Quantitatively, the room-
temperature scattering rate in ZrSiS is comparable with that in
typical noble metals (e.g., copper) [54].

In the inset in Fig. 6, one can see temperature dependence
of the scattering rate shown for ε = εF . The dependence
mainly stems from the phonon occupation factor nqν (T ) en-
tering the expression for self-energy [Eq. (3)]. In the tempera-
ture range considered, phonons can be considered classically,

meaning nqν � kBT/h̄ωqν and ensuring linear dependence
of the electron linewidth Im[
qν (T )] with temperature. At
T � 100 K one can see deviations from the linear dependence
related to the low-T behavior of the phonon distribution.
The obtained dependence is in agreement with experiments
on zero-field resistivity in ZrSiS measured at various tem-
peratures (e.g., see Ref. [16]). Here, we do not explicitly
consider low-T range mainly because the Boltzmann trans-
port theory is limited in this regime. Also, other scattering
mechanisms become dominant at low T , such as electron-
electron and electron-impurity scattering. Nevertheless, it is
interesting to extrapolate the data to the zero-temperature limit
after which we obtain a finite scattering rate. This can be
understood as a residual scattering on zero-point vibrations,
allowed by the approximation for self-energy [Eq. (3)] used
in this paper. Our estimation of the corresponding relaxation
time yields τ0 ≈ 0.25 ps, which is an order of magnitude
larger than the value obtained from the Hall measurements
in Ref. [28]. Expectedly, zero-temperature scattering is likely
to be governed by other mechanisms. Apart from obvious
scattering sources, such as impurities or defects, electron-
electron interaction could be especially important in ZrSiS at
low T because it may cause considerable renormalization of
the electron energy spectrum [24,25]. We also note that, under
realistic experimental conditions, surface states might provide
a nonzero contribution to the scattering, especially in thin
samples, as suggested by recent reports on surface chemistry
in ZrSiS [55].

Apart from the scattering rate, transport properties are
largely determined by the carrier velocities. In Fig. 6(b), we
show energy dependence of the averaged carrier velocities in
ZrSiS calculated along the in-plane [100] and out-of-plane
[001] directions of the crystal. In both cases, the energy
dependence is weak, and the anisotropy v̄x/v̄z varies between
two and three depending of the energy. Along the in-plane di-
rection, the obtained values are around 0.4 × 106 m/s, which
is somewhat smaller than the Fermi velocity in graphene. It
should be noted that the DFT values for the carrier velocity
may be underestimated. In graphene, many-body corrections
applied at the GW level of theory lead to an ∼17% en-
hancement of the Fermi velocity [56]. Similar magnitude
of renormalization has recently been obtained for a similar
nodal-line semimetal ZrSiSe [57]. Since the conductivity is
quadratically dependent on the carrier velocity [Eq. (1)], we
expect that the resistivity calculated in our paper is likely
overestimated by up to 30% compared to GW calculations. It
is worth noting, however, that this expectation is not consistent
with experimental observations, suggesting a suppression of
the carrier velocities in ZrSiS [24] and ZrSiSe [57], at least, in
the low-T regime.

Finally, we consider resistivities and their dependence of
the rigid shift doping (Fermi energy). In Fig. 7, one can see
the resistivities ρ = 1/σ calculated along the [100] and [001]
directions in ZrSiS. The in-plane resistivity ρxx is weakly
dependent on the Fermi energy with the minimum values
being 3.3 and 12.2 μ� cm at T = 100 and 300 K, respec-
tively. In contrast, the out-of-plane resistivity ρzz exhibits a
more pronounced energy dependence, varying by more than
factor of two in the considered energy range. At the neutrality
point, out-of-plane resistivity values are significantly higher,
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FIG. 7. In-plane (ρxx) and out-of-plane (ρzz) components of the
resistivity tensor in ZrSiS shown as a function of the Fermi energy
for (a) T = 100 K and (b) T = 300 K.

reaching 20.8 and 75.7 μ� cm for T = 100 and 300 K,
respectively. The corresponding anisotropy ratio is ρzz/ρxx ∼
6.3–8.8 depending on the energy and temperature considered.
Temperature dependence of the resistivity can be easily re-
stored from the inset in Fig. 6(a) keeping in mind that within
the approach utilized in this paper T dependence originates
predominantly from the scattering rate ρ(T ) ∼ 〈τ−1(T )〉. As
is expected for conventional conductors, at moderate tempera-
tures, we obtain linear dependence ρ ∼ T , in accordance with
experiments [15,16,18,22,27,36].

It is instructive to compare the calculated resistivity with
experimental data, which are broadly presented in the liter-
ature. The measurements of zero-field resistivity are mostly
limited to the in-plane direction, demonstrating a rather large
spread of values. Most of the experimental studies report
in-plane resistivity in ZrSiS at room temperature to be around
15 ± 1 μ� cm [15,16,18,36]. These values are in good agree-
ment with our calculations (12.2 μ� cm), keeping in mind
that only electron-phonon scattering mechanism is taken into
account. Some studies, however, report considerably lower
values: 8 [28] and 10 μ� cm [27], which appears somewhat
unexpecting taking into account that the values calculated in
our paper should be considered as a lower bound for resistivity
because other scattering mechanisms are present in exper-
iments, increasing the resistivity. Apart from experimental
uncertainty, the calculated resistivity could be overestimated
due to ignoring of many-body effects, which are expected to
renormalize the carrier velocities and lead to lower resistivi-
ties as we already discussed above. In contrast, Ref. [22] re-
ports much higher resistivity in ZrSiS with ρxx ≈ 27 μ� cm,
which is apparently in conflict with other available measure-
ments, and probably points to a poor sample quality. Accurate
measurements along the [001] direction have proven to be
way more challenging. In a recent study by Shirer et al. [36],
magnetotransport experiments have been performed on ZrSiS
microstructures with well-defined geometry and high sample
quality [36], yielding ρzz ≈ 110 μ� cm at T = 300 K and
ρzz/ρxx ≈ 8 showing weak dependence of the temperature.
Both values are in good agreement with the values obtained
in this paper, taking into account the reservations made above.

It is fair to say that a significantly larger resistivity anisotropy
(∼50) has been obtained by Novak et al. in Ref. [28]. How-
ever, by far larger residual resistivity observed along the [001]
direction compared to Ref. [36] makes us believe that those
findings are less reliable as far as pristine ZrSiS is concerned.
Giant anisotropy could point to possible contamination be-
tween the layers, typical to van der Waals heterostructures
[58], resulting in an enhanced electron-impurity scattering
along the [001] direction.

IV. CONCLUSION

To conclude, we have performed a first-principles study of
electron-phonon interactions and related transport properties
in nodal-line semimetal ZrSiS. To this end, we used den-
sity functional perturbation theory in combination with the
semiclassical Boltzmann transport formalism. We found that
electron-phonon interaction in ZrSiS is weak with the cou-
pling constant λ ∼ 0.1 being virtually independent of external
doping. The main contribution to the interaction originates
from long-wavelength optical phonons, mainly associated
with Zr vibrations. The electron spectral function calculated
within the Migdal approximation shows no significant renor-
malization in the presence of electron-phonon interaction and
is only characterized by a finite linewidth compared to the
noninteracting spectrum. Although the scattering rate is found
to be essentially independent of the direction of electron
propagation, the carrier velocities are strongly anisotropic
between the in-plane [001] and out-of-plane [001] directions.
This gives rise to a pronounced anisotropy in the transport
properties with the resistivity ratio around ρzz/ρxx ∼ 7.5.
Quantitatively, the phonon-limited zero-field resistivity along
the in-plane direction is estimated to be ρxx ≈ 12 μ� cm at
room temperature, which has a comparable contribution from
both hole and electron carrier channels. The relatively low
value can be directly attributed to a combination of weak
electron-phonon coupling and high carrier velocities. Overall,
the obtained values are found to be in good agreement with
available experimental data, although a notable discrepancy
between the experimental results of different research groups
should be mentioned. As in conventional metallic conductors,
low resistivity in ZrSiS excludes electron-phonon coupling
from being a mechanism for superconductivity at any realistic
temperatures.

Our paper constitutes a step forward toward microscopic
understanding of charge carrier scattering and transport prop-
erties in ZrSiS and may be useful for further theoretical and
experimental studies of electronic transport properties of this
material and its analogs.
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