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Electronic structure of 30◦ twisted double bilayer graphene
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The electronic structures of 30◦ twisted double bilayer graphene, which loses the translational symmetry due
to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the
interlayer decoupling across the 30◦ twisted interface in the vicinity of the Fermi level from various electronic
properties, including the density of states, effective band structure, optical conductivity, and Landau-level
spectrum. However, at Q points, the interlayer coupling results in the appearance of new Van Hove singularities in
the density of states, new peaks in the optical conductivity and, importantly, the 12-fold-symmetry-like electronic
states. The k-space tight-binding method is adopted to explain this phenomenon. The electronic states at Q points
show charge distribution patterns more complex than the 30◦ twisted bilayer graphene due to the symmetry
decrease. These phenomena also appear in the graphene monolayer on the AB-stacked graphene bilayer with a
30◦ twist angle.
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I. INTRODUCTION

In theory, twisted bilayer graphene (TBG) can transform
from a crystalline (commensurate configuration) to a qua-
sicrystalline (incommensurate configuration), depending on
the twist angle [1]. At a large twist angle (θ > 15◦), the TBG
has electronic properties similar to those of two decoupled
graphene monolayers [2–9]. The Fermi velocity is renormal-
ized by decreasing the twist angle [10,11]. At the so-called
magic angle (θ ∼ 1.1◦), the Fermi velocity becomes zero and
the moiré flat bands appear in the vicinity of the Fermi level
[10,12]. Accordingly, the TBG at the small twist angle as
a model system of strongly correlated electrons has drawn
much attention due to novel electronic properties, such as
the unconventional superconductivity [13–15] and correlated
insulator phases [16].

The 30◦ TBG, an incommensurate bilayer configuration,
has been grown successfully on H-SiC(0001) [17], Pt(111)
[18], Cu-Ni(111) [19], and Cu [20,21] surfaces. As the first
two-dimensional quasicrystal based on graphene, 30◦ TBG
has received increasing attention both experimentally and
theoretically [22–28]. A method to grow high-quality 30◦
TBG epitaxially on SiC using borazine as a surfactant has
also been proposed [22]. The 12-fold rotation symmetry and
quasiperiodicity of 30◦ TBG have been demonstrated by
various measurements, such as the Raman spectroscopy, low-
energy electron microscopy/diffraction, transmission electron
microscopy, and scanning tunneling microscopy measure-
ments [17–19,22,27]. A number of Dirac cones, especially
the mirror-symmetric ones, have been observed by the
angle-resolved photoemission spectroscopy (ARPES) mea-
surements [17,18]. The quasicrystalline order in 30◦ TBG can
induce unique localization of electrons without any extrinsic
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disorders [23,26]. The perfect superlubricity characterized by
a scale invariant sliding force is demonstrated theoretically
[24]. The quantum oscillations with spiral Fermi surfaces
were predicted theoretically due to the quasiperiodicity and
weak coupling between layers [29]. The unbalanced electron
distributions with characteristic signatures due to Umklapp
scatterings are revealed exepriementally [25]. All these pecu-
liar properties, especially the quasiperiodicity, make 30◦ TBG
much different from graphene monolayer, although it has
electronic properties very similar to those of two decoupled
graphene monolayers in the vicinity of the Fermi level [21].

Recently, twisted double bilayer graphene (TDBG) con-
sisting of two AB-stacked bilayers has received much attention
especially on the properties [30–34] associated with the
strongly correlated electrons in the electrically tunable flat
band [35–38], such as the superconductivity, magnetic phase
transition, and correlated insulating state. Besides, the TDBG
under the electric field was found to be a valley Hall insulator
[38]. Generic twisted multilayer graphene, M layers on top
of N layers with a twist angle, possesses two topologically
nontrivial flat bands, which exhibit a Chern-number hierarchy
[39]. Similar to the 30◦ TBG, the 30◦ TDBG is expected to
possess some striking properties due to the disappearance of
the translational symmetry. More importantly, the successful
fabrication of 30◦ TBG and accurate determination of some
key structural parameters (such as twist angle, stacking order,
and interlayer spacing) in experiments [40,41] ensure the re-
alization of 30◦ TDBG in the near future.

In this paper, we study the effect of the 30◦ twisted in-
terface between two AB-stacked graphene bilayers by means
of the tight-binding approximation. By comparing with AB-
stacked bilayer graphene, we find out that the two subsystems
on both sides of the 30◦ twisted interface almost decou-
ple in the low-energy region. Importantly, there is a strong
coupling between them at the Q point and it results in the
appearance of some 12-fold-symmetry-like quasicrystalline
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FIG. 1. (a) The top and side views of 30◦ twisted double bilayer graphene as well as the detailed structure around the rotation center.
b(= a/

√
3) is the carbon-carbon bond length and h is the interlayer distance. (b) The Brillouin zones of the bottom and top bilayers with some

special points labeled. (c) The locations of the k points of the 12 waves for k0 = 0. The six k-points of the bottom (top) bilayer are labeled by
empty black (solid red) dots. The 12 k-points are folded to the 12 Q points as k(0) → Q1, k(1) → Q̃5, k(2) → Q2, k(3) → Q̃3, k(4) → Q3, k(5) →
Q̃1, k(6) → Q4, k(7) → Q̃2, k(8) → Q5, k(9) → Q̃0, k(10) → Q0, and k(11) → Q̃4.

electronic states. The similar electronic properties also exist in
the system of graphene monolayer on AB-stacked bilayer with
30◦ twist angle (30◦ AB/G). Two realistic systems, 30◦ TDBG
and 30◦ AB/G, are introduced to realize the quasicrystalline
character.

The rest of the paper is organized as follows. In Sec. II,
we describe the structure of 30◦ TDBG, basic theory, and
computational details. In Sec. III, the interlayer decoupling
and coupling at both low- and high-energy regions and related
discussions are presented. In Sec. IV, we summarize our find-
ings and conclude the paper.

II. MODEL AND METHODS

A. Structure of 30◦ TDBG

The structure of 30◦ TDBG is shown in Fig. 1(a). It consists
of two AB-stacked graphene bilayers with the top bilayer

twisted by 30◦. The stacking of the middle two layers is the
same as a 30◦ TBG. In total, there are two AB-stacked inter-
faces and one 30◦ twisted interface in a 30◦ TDBG. The lattice
vectors and reciprocal lattice vectors of the bottom bilayer are

a1 = a

(√
3

2
,−1

2

)
, a2 = a

(√
3

2
,

1

2

)
, (1)

and

a∗
1 = 2π

a

(
1√
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)
, a∗

2 = 2π

a

(
1√
3
, 1

)
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respectively. a = 2.456 Å is the lattice constant of graphene.
The lattice vectors and the reciprocal lattice vectors of the top
bilayer are

ã1 = a(1, 0), ã2 = a

(
1

2
,

√
3

2

)
, (3)
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FIG. 2. (a) The occupation numbers of the eigenstates obtained by diagonalizing the Hamiltonian of the 15/26 approximant at � point.
The black and red dots denote the occupation numbers on the bottom and top bilayers, respectively. (b), (c) The comparisons of the (effective)
band structures [eft panel in (b)], the density of states [right panel in (b)], and the real part of the optical conductivity σ (c) between 30◦ twisted
double bilayer graphene and AB-stacked bilayer graphene. The results labeled by round disk and approximant are from the round disk with
10 million sites and the 15/26 approximant, respectively. σ is in units of σ0 = πe2/2h. The effective band structure is plotted in color in a
logarithmic scale.

and

ã∗
1 = 2π

a

(
1,− 1√

3

)
, ã∗

2 = 2π

a

(
0,

2√
3

)
, (4)

respectively. The atomic positions are

RX = n1a1 + n2a2 + τX (bottom bilayer),
(5)

RX̃ = ñ1ã1 + ñ2ã2 + τX̃ (top bilayer),

where ni and ñi are integers, X = A, B,C, D and X̃ =
Ã, B̃, C̃, D̃ stand for the sublattices, and τX and τX̃ are the
sublattice positions in the unit cell. In this paper, τX ’s and
τX̃ ’s are chosen as

τA = 1
3 a1 + 1

3 a2 + hêz = (b, 0, h),

τB = 2
3 a1 + 2

3 a2 + hêz = (2b, 0, h),
(6)

τC = 2
3 a1 + 2

3 a2 + 0êz = (2b, 0, 0),

τD = a1 + a2 + 0êz = (3b, 0, 0),

and

τÃ = 1
3 ã1 + 1

3 ã2 + 2hêz = (
1
2 a, 1

2 b, 2h
)
,

τB̃ = 2
3 ã1 + 2

3 ã2 + 2hêz = (a, b, 2h),
(7)

τC̃ = 2
3 ã1 + 2

3 ã2 + 3hêz = (a, b, 3h),

τD̃ = ã1 + ã2 + 3hêz = (
3
2 a, 3

2 b, 3h
)
,

where b = 1.418 Å is the nearest-neighbor distance within
graphene layer, h = 3.349 Å is the interlayer distance, and êz

is the unit vector along the z axis.

B. 15/26 approximant

In this paper, the 30◦ TDBG is approximated by a moiré
pattern obtained by introducing slight stress to the top bi-
layer, which changes the lattice constant of the top bilayer
from a = 2.456 to ã = 2.454 Å. The moiré pattern is named

a 15/26 approximant [28] due to the commensurate period
15 × √

3a = 26 × ã along the x axis, where
√

3a and ã are
the basic periods of the bottom and top bilayers, respectively.
Accordingly, the elementary unit cell of the 15/26 approxi-
mant contains 5404 sites, including 1350 × 2 sites from the
bottom bilayer and 1352 × 2 sites from the top bilayer.

Because the density of states count the number of the states
at certain energy and the optical conductivity contains the
information of the amplitude and phase of the wave functions,
the validation of an approximant can be verified if these two
physical quantities of quasicrystalline can be reproduced ac-
curately. Thus we calculate the density of states and optical
conductivity of the 15/26 approximant and compare them
with those of a real 30◦ TDBG [see Fig. 2(b)]. In these
calculations, the real 30◦ TDBG is modeled by a round disk
containing about 10 million sites. We remove all the dangling
bonds, and in such a huge round disk, the edge effects can be
ignored safely.

Besides the 15/26 approximant, the commensurate moiré
patterns with the twist angle close to 30◦ can also be con-
sidered as an approximant of 30◦ TDBG, such as 29.957◦
and 30.011◦ TDBGs. A commensurate moiré pattern can be
determined by two integers m and n, which are related to the
twist angle θ as [1]

cos θ = m2 + 4mn + n2

2(m2 + mn + n2)
. (8)

The twist angles of 29.957◦ and 30.011◦ correspond to
(m, n) = (11, 30) and (15,41), respectively. Our calculations
shown in the Supplemental Material [42] indicate that both
structures can also reproduce the density of states and optical
conductivity of 30◦ TDBG accurately. However, the 15/26
approximant is chosen to study the electronic structure of 30◦
TDBG, because 29.957◦ and 30.011◦ TDBG contain 10 808
and 20 168 sites, which are much more than the site number
of 5404 in 15/26 approximant.
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C. Tight-binding model

The Hamiltonians of the 30◦ TDBG and its 15/26 approx-
imant are described by a tight-binding model based on pz

orbitals. The hopping energy between site i and j is deter-
mined by [43]

t (ri j ) = n2Vppσ (|ri j |) + (1 − n2)Vppπ (|ri j |), (9)

where n is the direction cosine of relative position vector ri j

with respect to the z axis. The Slater-Koster parameters Vppσ

and Vppπ read

Vppπ (|ri j |) = −γ0e2.218(b−|ri j |)Fc(|ri j |),
Vppσ (|ri j |) = γ1e2.218(h−|ri j |)Fc(|ri j |). (10)

γ0 and γ1 are 3.12 and 0.48 eV, respectively. Fc is a smooth
function:

Fc(r) = (1 + e(r−0.265)/5)−1. (11)

In our calculations, all the hoppings with the neighbor dis-
tance less than 5 Å are under consideration. For 30◦ TBG, the
Fermi velocity and effective band structure calculated using
this tight-binding model fit well the experimental results [28].
This tight-binding model has also been justified by comparing
results with several experiments [44–46].

D. Tight-binding propagation method

The density of states and optical conductivity are calcu-
lated by the tight-binding propagation method (TBPM) [47].
This method is based on the numerical solution of the time-
dependent Schrödinger equation without any diagonalization.
Both memory and CPU costs scale linearly with the system
size, and TBPM is extremely powerful for the calculations
of large samples such as quasicrystalline with more than 10
million sites.

In TBPM [47], a random superposition of the pz orbitals
at all sites is used as the initial state |φ0〉 with 〈φ0|φ0〉 = 1.
DOS is calculated as Fourier transform of the time-dependent
correlation function

d (ε) = 1

2π

∫ ∞

−∞
eiετ 〈φ0|e−iHτ/h̄|φ0〉 dτ. (12)

The optical conductivity is calculated by using the Kubo
formula in TBPM [47]. The real part of the optical conductiv-
ity matrix σα,β at temperature T reads

Reσα,β (ω) = lim
ε→0+

e−h̄ω/kBT − 1

h̄ωA

∫ ∞

0
e−ετ sin ωτ

× 2Im 〈 jαφ2(τ )| jβφ1(τ )〉 dτ. (13)

Here, A is the area of the unit cell per layer, and |φ1(τ )〉 and
|φ2(τ )〉 read

|φ1(τ )〉 = e−iHτ/h̄[1 − f (H )]|φ0〉,
(14)

|φ2(τ )〉 = e−iHτ/h̄ f (H )|φ0〉,
where f (H ) = 1/(e(H−μ)/kBT + 1) is the Fermi-Dirac distri-
bution operator and μ is the electronic chemical potential.
In this paper, all the optical conductivities are calculated at
T = 300 K and μ = 0 eV (the charge neutrality point).

E. Band-unfolding process

Although the band structure can be derived directly from
the periodic 15/26 approximant, its supercell character rela-
tive to the primitive unit cell of graphene results in the fold
of the bands. So the band structures calculated directly from
the 15/26 approximant cannot be used to compare with the
ARPES measurements. To overcome this problem, the band
structure of 15/26 approximant is unfolded to the primitive
unit cell of graphene as the following pressure.

First, the spectral function at wave vector k and energy ε

can be calculated by [48]

A(k, ε) =
∑
IkSC

PIkSC (k)δ(ε − εIkSC ), (15)

where εIkSC is the energy for Ith band at wave vector kSC

for the approximant. Actually, only one kSC, namely, kSC =
k + GSC being GSC the reciprocal lattice vector of the approx-
imant, contributes to the spectral function. The spectral weight
is defined as

PIkSC (k) =
∑

s

∑
i

∣∣ 〈ψPCs
ik

∣∣�SC
IkSC

〉 ∣∣2 =
∑

s

Ps
IkSC

(k), (16)

where |ψPCs
ik 〉 and |�SC

IkSC
〉 are the eigenstates of layer s and the

approximant, respectively. Under the tight-binding method,
the contribution from layer s is

Ps
IkSC

(k) = 1

ns

∑
α

∑
l sl

′
s

eik·(l s−l ′
s )U l sα

∗
IkSC

U l ′
sα

IkSC
. (17)

Here, ns is the number of the primitive unit cell of layer s
inside the elementary unit cell of the approximant. U l sα

IkSC
is the

projection of |�SC
IkSC

〉 (the eigenstate of the approximant) on
|kSCl sα〉 (the Bloch basis function of approximant). Equation
(17) indicates that only the eigenstates of the approximant are
necessary to obtain the spectral function.

Then the effective band structure can be obtained by [49]

δN (k, ε) =
∫ ε+δε/2

ε−δε/2
A(k, ε′)dε′, (18)

where δε is the bin width in energy sampling.

III. RESULTS AND DISCUSSION

A. Interlayer decoupling in the low-energy region

First, the distributions of the eigenstates in the low-energy
region are calculated by diagonalizing the Hamiltonian of the
15/26 approximant at the � point and the results are shown in
Fig. 2(a). All these states around the Fermi level occur inside
only the bottom bilayer or the top bilayer, which implies the
interlayer decoupling across the 30◦ twisted interface in the
vicinity of the Fermi level. It can be proven further by compar-
ing the (effective) band structures and density of states of the
30◦ TDBG and AB-stacked bilayer graphene [see Fig. 2(b)].
Both of them show a parabolic touch point at K point. The
agreement in the low-energy region means that 30◦ TDBG
should have similar electronic properties to an AB-stacked
bilayer graphene, such as the optical conductivity shown in
Fig. 2(c).
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FIG. 3. The density of states of AB-stacked bilayer graphene and
30◦ TDBG under the magnetic field of 20 T, averaged from ten
different initial random states in Eq. (12). The vertical lines show
the analytical Landau levels of AB-stacked bilayer. The blue and
red dashed lines represent the Landau levels εn,L,+ and εn,H,+ with
n � 1, respectively. The orange solid line is the Landau level ε0,H,+.
The levels ε0,L and ε−1,L are at zero. Only the electron side is shown
due to the electron-hole symmetry in the simplified tight-binding
approximation.

The interlayer decoupling across the 30◦ twisted interface
can also be proven by checking the Landau levels (see Fig. 3),
which is in good agreement with the numerical and analytical
[50] results of an AB-stacked bilayer graphene. To compare
with the analytical results, a simplified but often used tight-
binding model is adopted. The intralayer hoppings with the
nearest-neighbor approximation are adopted. The interlayer
hopping across the AB-stacked interfaces with only the verti-
cally arranged neighbors are considered, but for the interlayer
hoppings across the 30◦ twisted interface, all the neighbors
with the neighbor distance less than 5 Å are taken into ac-
count. The analytical Landau levels shown in Fig. 3 can be
classified into three groups [50]. They are (1) n � 1:

εn,μ,s = s√
2

[
γ 2

1 + (2n + 1)�2
B

+μ

√
γ 2

1 + 2(2n + 1)γ 2
1 �2

B + �4
B

]1/2
, (19)

(2) n = 0,

ε0,L = 0, ε0,H,s = s
√

γ 2
1 + �2

B, (20)

and (3)n = −1:

ε−1,L = 0. (21)

In these equations, s = ±1 (labeled by ±) stands for the
electron and hole bands, respectively. μ = ±1 correspond to
the higher and lower subbands in the limit of zero magnetic
fields, respectively. We use the notation μ = H, L instead of
± to avoid the confusion with s = ±. �B = 0.163 eV (defined
by

√
2h̄v2

f eB) is the magnetic energy which corresponds to the
Fermi velocity v f = 1 × 106 m/s in graphene. In Fig. 3, only
the electron side is shown due to the electron-hole symmetry
in this simplified tight-binding model.

FIG. 4. The comparison of the effective band structures around
K and K̃1 along the x axis under the electric field of (a) 0 and
(b) 0.05 eV/Å. The results are plotted in color in a logarithmic scale.

Although the interlayer decoupling dominates the elec-
tronic properties in the low-energy region, the obvious
interlayer coupling still exists in the high-energy region, es-
pecially around Q̃1 point. Actually, 30◦ TDBG shows the
similar electronic structure at all Q points (Qi and Q̃i with
i = 0, . . . , 5), which deviates from the AB-stacked bilayer
graphene obviously. It results in the appearance of the new
peaks in both density of states and optical conductivity [see
Figs. 2(b) and 2(c)]. The origin of the deviation around Q
points will be discussed in the next section.

Similar to 30◦ TBG [17,18], another important property
is the emergence of the energy valley at K̃1, which is mirror
symmetric with respect to K point [see Fig. 4(a)] because the
energy valley at K ′ is scattered to K̃1 with a strong scattering
strength. The interlayer decoupling and energy valley scatter-
ing are robust even an electric field is applied perpendicular
to the graphene plane [see Fig. 4(b)]. The relative weak signal
of the effective band structure around K̃1 can still be detected
in the experiment, because the mirror-symmetric Dirac cones
in 30◦ TBG with the comparable signal strength have been
detected by ARPES measurements in the logarithmic scale
[17,18].

B. Interlayer coupling at Q points

The effective band structure of 30◦ TDBG deviates obvi-
ously from the band structure of AB-stacked bilayer graphene
around the Q points [see Fig. 2(b)], which implies the strong
interlayer coupling across the 30◦ twisted interface. The k-
space tight-binding method [26] is adopted to understand this
phenomenon. In this method, a k0-related subspace is spanned
by the Bloch basis functions of the bottom and top bilayers
|k, X 〉 and |k̃, X̃ 〉 with k = k0 + G̃ and k̃ = k0 + G, where
G and G̃ are the reciprocal lattice vectors of the bottom and
top bilayers, respectively. So, the interlayer coupling rule [51]
k + G = k̃ + G̃ is always satisfied. The Bloch function is
defined by

|k, X 〉 = 1√
N

∑
RX

eik·RX |RX 〉 (bottom bilayer),

(22)

|k̃, X̃ 〉 = 1√
N

∑
RX̃

eik̃·RX̃ |RX̃ 〉 (top bilayer),

where N is the normalization factor and |RX 〉 (|RX̃ 〉) denotes
the pz orbital located at sublattice RX (RX̃ ).
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The Hamiltonian consists of three parts, namely, H =
H0 + H̃0 + U , where H0 and H̃0 are the Hamiltonians of the
bottom and top bilayers, and U is the interaction between the
two bilayers. The matrix elements within the bottom bilayer
are given,

〈k, X |H0|k′, X ′〉 = hXX ′ (k)δk,k′ ,
(23)

hXX ′ (k) =
∑

L

t (L + τX ′X )eik·(L+τX ′X ),

where L = n1a1 + n2a2 and τX ′X = τX ′ − τX , and this form
also applies to the top bilayer. The matrix elements between
the two bilayers read

〈k, X |U |k̃, X̃ 〉 =
∑
GG̃

T (k + G)eiG·τX −iG̃·τX̃ δk+G,k̃+G̃, (24)

where T (k + G) is the in-plane Fourier transform of the inter-
layer hopping function t (r) at vector k + G. It is defined by

T (q) = 1

S

∫
t (rxy + ZX̃ X êz )e−iq·rxy drxy, (25)

where ZX̃X = (τX̃ − τX ) · ez is the coordinate difference of
sublattice X̃ and X along the z axis. For the tight-binding
model we adopt, T (q) only depends on the length of q,
namely, T (q) = T (|q|).

Under the k0-related subspace spanned by the Bloch ba-
sis functions {|k0 + G̃, X 〉} plus {|k0 + G, X̃ 〉}, only the G’s
and G̃’s with small lengths contribute the Hamiltonian H (k0)
effectively. In this paper, the 12-wave approximation [26],
namely, only considering the G’s and G̃’s with the length less
than 4π√

3a
, is adopted to construct the Hamiltonian, which has

been proven to be accurate enough to simulate the 30◦ TBG
[26]. The k-points of the 12 waves are expressed by

k(i) = k0 + G(i) (i = 0, . . . , 11) (26)

and

G(2 j) = R
(π

3
j
)

G(0) ( j = 0, . . . , 5),

G(2 j+1) = R
(π

3
j
)

G(1) ( j = 0, . . . , 5), (27)

G(0) = ã∗
1 + ã∗

2, G(1) = −a∗
2,

where R(θ ) is the rotation by an angle θ around the z axis. The
strongest interaction T (q) takes place just between k(i) and
k(i±1). After ignoring the weaker interactions, the Hamiltonian
can be expressed by a 48 × 48 matrix,

H (k0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H (0) W0,1 W †
11,0

W †
0,1 H (1) W1,2

W †
1,2 H (2)

. . .
. . .

. . .

W †
9,10 H (10) W10,11

W11,0 W †
10,11 H (11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

where

H (2 j)
XX ′ = hXX ′ (k0 + G(2 j) ) (bottom bilayer),

(29)
H (2 j+1)

X̃ X̃ ′ = hX̃ X̃ ′ (k0 + G(2 j+1)) (top bilayer),

with j = 0, ..., 5 and

Wi,i+1 = T (k0 + G(i) + G(i+1))

⎛
⎜⎜⎜⎜⎝

ei 2π
3 1 0 0

1 e−i 2π
3 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(30)
To relate the previous study on 30◦ TBG [26], we adopt the
sublattice order of (A, B,C, D) or (Ã, B̃, C̃, D̃) for i ≡ 0 or 3
(mod 4), and (B, A,C, D) or (B̃, Ã, C̃, D̃) for i ≡ 1 or 2 (mod
4). This order makes all the matrices of Wi,i+1 (i = 0, ..., 11)
keep the same form. After the diagonalization of the Hamil-
tonian, the E ∼ k0 dispersion relationship can be obtained,
which is named a quasiband structure to distinguish the effec-
tive band structure derived by unfolding the band structure of
15/26 approximant. In Fig. 5, we plot the quasiband structure
around k0 = 0 and compare it with the effective band struc-
ture around Q̃1. The good agreement with each other proves
the validations of the 12-wave approximation and the 15/26
approximant again.

Let us focus on the case of k0 = 0. After folding the k
points of the 12 waves to their corresponding first Brillouin
zones, the basis set is just the collection of the Bloch functions
of the bottom bilayer {|Qi, X 〉} and the Bloch functions of
the top bilayer {|Q̃i, X̃ 〉} (i = 0, ..., 5) [see Fig. 1(b)]. The
corresponding relationship between the k points of the 12
waves k(i) and Qi (Q̃i) is shown in Fig. 1. Due to the energy
degeneration of the 12 waves, the strong interaction among
them results in the obvious deviation of the effective band
structure from AB-stacked bilayer graphene. If the interlayer
hoppings across the two AB-stacked interfaces consider only
the vertically arranged neighbors, the Hamiltonian H (k0 = 0)
can be simplified as

H (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

0 t0 0 0
t0 0 γ1 0
0 γ1 0 t0
0 0 t0 0

⎞
⎟⎠ i ≡ 0, 3 (mod 4)

⎛
⎜⎝

0 t0 γ1 0
t0 0 0 0
γ1 0 0 t0
0 0 t0 0

⎞
⎟⎠ i ≡ 1, 2 (mod 4)

(31)

and

Wi,i+1 = T0

⎛
⎜⎜⎜⎝

ei 2π
3 1 0 0

1 e−i 2π
3 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (32)

where t0 = 0.682γ0, and T0 = 0.157 eV. Unlike 30◦ TBG,
the Hamiltonian matrix H (i) does not keep the same form at
different k(i) because of the sublattice order we adopt and the
symmetry decrease. It makes the Hamiltonian H (k0 = 0) lose
the symmetry under the rotation of moving H (i) to H (i+1).
In the following, we focus on only the valence band due to
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FIG. 5. The comparisons of the effective band structure around Q̃1 (plotted in color in a logarithmic scale) and the quasiband structure
around k0 = 0 (plotted in blue solid lines) in (a) the valence band and (b) the conduction band. In the valence band, except for the states 0, 11,
12, and 23, any two states marked by i,i+1 are degenerate.

the much larger energy splitting in the valence band than
that in the conduction band. The 24 electronic states of the
valence band are labeled by 0,..., 23 [see Fig. 5(a)]. Expect
for states 0, 11, 12, and 23, the others are all twofold degen-
erate states. The charge distributions of these states are shown
in Fig. 6, where (i,j) corresponds to the charge distribution
with states i and j occupied at the same time. (i,j) or (m,n)
means the two charge distributions have a similar pattern
and are plotted in the same subfigure. Comparing with 30◦
TBG having the point group D6d , all the charge distribution

patterns in 30◦ TDBG lose the 12-fold symmetry due to the
symmetry decrease to point group D3. But the corresponding
12-fold-symmetry-like counterparts still exist. For example,
the occupation number of the charge distribution 0 on the
middle two layers is more than 85%. If the occupations on
the bottom and top layers are ignored, this charge distribution
pattern still possesses the 12-fold symmetry, which corre-
sponds to the charge distribution m = 0 or 6 in 30◦ TBG
[26]. In addition, charge distributions (1,2) and (3,4) have the
occupation number on the middle two layers more than 70%,

0 or 23 (1,2) or (21,22) (3,4) or (19,20) (5,6) or (17,18)

(7,8) or (15,16) (9,10) or (13,14) 11 or 12

FIG. 6. The charge distributions of the electronic states in the valence band at k0 = 0. The labels of these states are given in Fig. 5(a). The
occupations on the four layers from bottom to top are plotted in green, blue, red, and yellow dots. i or j means states i and j have similar charge
distribution patterns. (i,j) corresponds to the charge distribution with the states i and j occupied at the same time.
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corresponding to cases m = ±1,±5 and m = ±2,±4 in 30◦
TBG [26], respectively. The charge distribution (5,6) is similar
to the case m = ±3 in 30◦ TBG [26], but shows the similar
occupation numbers on the four layers. Importantly, all of the
charge distribution patterns (7,8), (9,10), and 11 do not exist
in 30◦ TBG, and there are very little occupation numbers on
the middle two layers (less than 20%). These results indicate
that the 12-wave interaction results in the strong interlayer
coupling across the 30◦ twisted interface at k0 = 0.

By using the same methods for studying the 30◦ TDBG, we
also calculate the electronic structure of graphene monolayer
on AB stacked bilayer graphene with a 30◦ twist angle (30◦
AB/G). The results shown in the Supplemental Material [42]
indicate that 30◦ AB/G also shows the interlayer decoupling
across the 30◦ twisted interface in the vicinity of the Fermi
level, the strong interlayer coupling at Q points, and the
12-fold-symmetry-like quasicrystalline electronic states. The
results imply that it is a general phenomenon in 30◦ twisted
graphene multilayer systems.

IV. CONCLUSION

By means of the tight-binding approximation, we system-
atically study the electronic properties of 30◦ TDBG, which
are composed of two AB-stacked bilayer graphene with top
bilayer twisted by 30◦. In the low-energy region, the inter-
layer decoupling across the 30◦ twisted interface is proven
from various electronic properties, such as the density of
states, effective band structure, optical conductivity, and Lan-
dau levels. However, the 30◦ TDBG shows quite a different

effective band structure to an AB-stacked bilayer graphene
at Q points due to the 12-wave interaction. It results in the
appearance of new van Hove singularities in the density of
states and new peaks in the optical conductivity. Importantly,
the 12-fold-symmetry-like electronic states, which occur in
30◦ TBG with exact 12-fold symmetry, can be found in 30◦
TDBG in spite of the symmetry decrease to the point group
D3. Moreover, some special electronic states appear in 30◦
TDBG, which cannot be found in 30◦ TBG. These states have
large occupation numbers on the top and bottom layers but
little occupation numbers on the middle two layers. These
results demonstrate the strong interlayer coupling across the
30◦ twisted interface in 30◦ TDBG at Q points, although it
shows interlayer decoupling in the vicinity of the Fermi level.
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