
PHYSICAL REVIEW B 102, 045113 (2020)

Pressure and electric field dependence of quasicrystalline electronic states
in 30◦ twisted bilayer graphene

Guodong Yu ,1,2,* Mikhail I. Katsnelson,2 and Shengjun Yuan 1,2,†

1Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology,
Wuhan University, Wuhan 430072, China

2Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands

(Received 29 March 2020; accepted 25 June 2020; published 9 July 2020)

A 30◦ twisted bilayer graphene demonstrates the quasicrystalline electronic states with 12-fold symmetry.
These states are, however, far away from the Fermi level, which makes conventional Dirac fermion behavior
dominating the low-energy spectrum in this system. By using a tight-binding approximation, we study the effect
of external pressure and electric field on the quasicrystalline electronic states. Our results show that, by applying
the pressure perpendicular to the graphene plane, one can push the quasicrystalline electronic states towards the
Fermi level. Then, the electron or hole doping on the order of ∼4 × 1014 cm−2 is sufficient for the coincidence
of the Fermi level with these quasicrystalline states. Moreover, our paper indicates that applying the electric field
perpendicular to the graphene plane can destroy the 12-fold symmetry of these states, and it is easier to reach
this in the conduction band than in the valence band. Importantly, the application of the pressure can partially
recover the 12-fold symmetry of these states against the electric field. We propose a hybridization picture that
can explain all these phenomena.
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I. INTRODUCTION

The linear band structure of graphene can be modified
efficiently by stacking one layer onto another. AA-stacked
bilayer graphene shows the band structure of two shifted Dirac
cones above and below the Fermi level [1]. The bilayer in
AB stacking is characterized (in the simplest approximation)
by a band structure with a parabolic touching point [2–6].
Moreover, a twist angle between two layers offers an addi-
tional degree of freedom to tune the electronic properties. For
example, the slightly twisted bilayer graphene at the magic
angle as a model system of strongly correlated electrons has
drawn much attention due to the novel electronic properties,
such as the flatband [7,8], unconventional superconductivity
[9–11], and correlated insulator phases [12]. If the twist angle
θ does not satisfy the commensurate condition [13], namely,

cos θ = m2 + 4mn + n2

2(m2 + mn + n2)
, (1)

where m and n are integers, the corresponding bilayer struc-
tures will not possess the translational symmetry. Falling
into this classification, the 12-fold symmetry and the
quasiperiodicity of 30◦ twisted bilayer graphene has been
demonstrated by various measurements, such as the Raman
spectroscopy, low-energy electron microscopy/diffraction,
transmission electron microscopy, and scanning tunneling
microscopy measurements [14–18].
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By now, 30◦ twisted bilayer graphene has been grown
successfully on some substrates, such as SiC [15,18], Pt
[14], Cu-Ni [16], and Cu [19,20] surfaces. This emergent
quasicrystal consisting of two graphene sheets with a per-
fect crystalline structure has attracted increasing attention
because of the coexistence of the quasicrystalline nature and
the relativistic properties [14–18,21–24]. Angle-resolved pho-
toemission spectroscopy (ARPES) measurements indicated
that the interlayer interaction between the two layers leads
to the emergence of the mirror-symmetric Dirac cones in-
side the Brillouin zone of each graphene layer [14,15,18]
and a gap opening at the zone boundary [14]. The critical
eigenstates [22,25] and the quantum oscillations with spiral
Fermi surfaces [23] were predicted theoretically due to the
quasiperiodicity, and the quantum oscillation at low doping
concentration was also observed in graphene encapsulated by
hexagonal boron nitride [26].

The appearance of the 12-fold symmetric electronic states
in 30◦ twisted bilayer graphene originates from the interaction
among the degenerate 12 waves [25]. The 12 waves stand for
the Bloch functions at Qi and Q̃i (i = 0–5) [see Fig. 1(b)].
Any factor affecting the 12-wave interaction may modify the
quasicrystalline electronic states. It has been proved theoreti-
cally and experimentally that the external pressure perpendic-
ular to the graphene plane can enhance the interlayer coupling
and modify the physical properties of few-layer graphene
[11,27–32]. The application of an electric field perpendicular
to the graphene plane can break the degeneration of the two
layers and affect the quasicrystalline electronic states.

In this paper, our purpose is to study the dependence of the
quasicrystalline electronic states on external pressure and the
electric field in 30◦ twisted bilayer graphene. All the pressures
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FIG. 1. (a) The structure of 30◦ twisted bilayer graphene. The
periods of the bottom (black) and top (red) layers are a (= 2.46 Å)
and 3b (= √

3a = 4.26 Å) along the x axis. (b) The Brillouin zones
of the two layers. K̃1 and K are mirror symmetric with respect to
the mirror-line Q1-Q̃1. The Bloch functions of the two layers at Qi

and Q̃i (i = 0–5) are degenerate. (c) and (d) are the charge distri-
butions of the valence-band maximum (VBM) and the conduction-
band minimum (CBM) at Q0. Blue and red dots correspond to the
occupation numbers on the bottom and top layers, respectively. The
larger occupation number is denoted by the larger dot.

and the electric fields applied in this paper are perpendicular
to the graphene plane. Although the 12-fold symmetric elec-
tronic states exist in 30◦ twisted bilayer graphene, they do not
contribute to most of electronic properties because of the long
distance from the Fermi level. In this paper, we find the way to
tune the energies of these 12-fold symmetric electronic states
towards the Fermi level and discuss the stability of the 12-fold
symmetries of these states under the external pressure and the
electric field.

II. METHODS

The tight-binding model based on the maximally localized
Wannier function [33] is adopted to study 30◦ twisted
bilayer graphene under pressure and the electric field. The
intralayer hopping energies up to the eighth nearest neighbors
are used to describe the graphene monolayer. They are
−2.8922, 0.2425, −0.2656, 0.0235, 0.0524, −0.0209, −
0.0148, and −0.0211 eV from the first to the eighth nearest
neighbors. The interlayer hopping described by a functional
form depends on both distance and orientation. The interlayer
hopping function reads

t (r) = V0(r) + V3(r)[cos(3θ12) + cos(3θ21)]

+V6(r)[cos(6θ12) + cos(6θ21)]. (2)

r is the projection of the vector connecting two sites on
the graphene plane. r = |r| describes the projected distances
between two Wannier functions. θ12 and θ21 are the angles be-
tween the projected interlayer bond and the in-plane nearest-
neighbor bonds. They describe the relative orientation of two
Wannier functions. The three radial functions depend on ten

TABLE I. The ten interlayer hopping parameters (in units of eV).

yi c(0)
i c(1)

i c(2)
i

λ0 0.310 −1.882 7.741
ξ0 1.750 −1.618 1.848
κ0 1.990 1.007 2.427
λ3 −0.068 0.399 −1.739
ξ3 3.286 −0.914 12.011
x3 0.500 0.322 0.908
λ6 −0.008 0.046 −0.183
ξ6 2.727 −0.721 −4.414
x6 1.217 0.027 −0.658
κ6 1.562 −0.371 −0.134

hopping parameters as (r̄ = r/a),

V0(r) = λ0e−ξ0 r̄2
cos(κ0r̄),

V3(r) = λ3r̄2e−ξ3(r̄−x3 )2
, (3)

V6(r) = λ6e−ξ6(r̄−x6 )2
sin(κ6r̄).

For twisted bilayer graphene, the relationship between the
interlayer distance compression ε and the external pressure
P satisfies the Murnaghan equation of state [28],

P = A(eBε − 1). (4)

ε is defined by 1 − h/h0, where h and h0 are the interlayer dis-
tances under finite and zero external pressures, respectively.
The parameters A and B were determined to be 5.73 GPa
and 9.54 from a previous study [27]. The dependence of
the ten interlayer hopping parameters on interlayer distance
compression is well described by a quadratic fit [27],

yi(ε) = c(0)
i − c(1)

i ε + c(2)
i ε2, (5)

where yi (i = 1, . . . , 10) stands for any one of the ten inter-
layer hopping parameters. The coefficients c(0)

i , c(1)
i , and c(2)

i
for all interlayer hopping parameters are listed in Table I [27].

It has been shown theoretically that there is no signifi-
cant atomic reconstruction in free-standing graphene bilayer
under a pressure up to 30 GPa [27]. High pressures up to
50 GPa have been applied to suspended graphene bilayer by
a diamond-anvil cell experimentally [34]. It turns out that, if
water is used as the pressure transmission medium, a pressure
with more than 37 GPa is needed to induce a transition from
sp2 to sp3 bonding between the two layers [34]. But, for
the silicone oil pressure transmission medium, the sp2-sp3

transition never occurs even up to 50 GPa [34]. In our paper,
we consider pressures up to 30 GPa, which is experimentally
reachable and does not change the sp2-bonding character in
suspended graphene bilayer systems.

The 15/26 approximant [35,36] is used to simulate 30◦
twisted bilayer graphene. The 15/26 approximant is a periodic
moiré pattern obtained by compressing the top layer slightly.
The lattice constant of the top layer changes from 2.46 to
2.458 Å. The two layers share the commensurate period
15 × √

3a = 26 × ã.
√

3a and ã are the periods of the bottom
and top layers along the x direction, respectively. It has been
proved that the 15/26 approximant can reproduce the elec-
tronic properties of 30◦ twisted bilayer graphene accurately
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FIG. 2. The comparisons of effective band structures and density of states at several pressures. The k path in the effective band structure
is along the dashed blue line shown in Fig. 1(b). The pressure affects the density of states in the valence band stronger than in the conduction
band.

[35]. The 12-fold symmetry of the quasicrystalline electronic
states can be distinguished within the moiré unit cell [35]. By
unfolding the band structure of the 15/26 approximant into
the Brillouin zones of the two layers [37,38], one can derive
the effective band structure, which can be used to compare
with the ARPES measurements.

III. RESULTS AND DISCUSSION

For 30◦ twisted bilayer graphene, the interlayer interaction
causes the appearance of five new van Hove singularities in
the density of states in the valence band [25,35]. Three of
them, labeled α, β, and γ , are associated with the critical
states [25]. It demonstrates the quasicrystalline nature of 30◦
twisted bilayer graphene. Comparing with the localized states,
a critical state still spreads over a large area, so our ap-
proximant model cannot reproduce the realistic critical states.
Fortunately, the quasicrystalline nature can be recognized by
the existence of the 12-fold symmetric states within the moiré
unit cell [35], such as the VBM and CBM at Q0 shown in
Figs. 1(c) and 1(d). All the eigenstates at Qi and Q̃i (i = 0–5)
[see Fig. 1(b)] are degenerate and show the same charge
distributions. So we use Q to stand for all Qi and Q̃i (i = 0–5)
in the following text. Because we focus on the quasicrystalline
electronic states, the VBM and CBM stand for the states at Q
in the effective bandstructure.

The density of states and effective band structures under
several pressures are shown in Fig. 2. The continuous evo-
lutions of these peaks are given in Fig. 4. As the pressure
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FIG. 3. The change in the Fermi velocity in twisted bilayer
graphene with different pressures for several twist angles. The four
commensurate twist angles θ = 21.79◦, 13.17◦, 7.34◦, and 5.09◦

correspond to (mn) = (1, 2), (2, 3), (4, 5), and (6,7), respectively.
The relationship between θ and (m, n) is given in Eq. (1).
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FIG. 4. The density of states under the pressure of less than
30 GPa. Five peaks in the valence band are marked. The positions
of the VBM and CBM are shown by the green dashed lines.

increases, the peaks β and m, as well as the peaks γ and l ,
merge gradually, and a big gap forms between peaks β and γ .
The form of the gap is partially attributed to the increasing
interaction strength between the Dirac cones at K and K̃1.
The Dirac cone at K̃1 appears because the Dirac cone at K ′ is
scattered to K̃1 [14,39]. The interaction between Dirac cones
also reduces the Fermi velocity (shown in Fig. 3). Comparing
with some smaller twist angles, the Fermi velocity in 30◦
twisted bilayer graphene is affected much weaker by pressure.
It means the robust Dirac fermion behavior near the Fermi
level.

Our results indicate that the 12-fold symmetry of the
quasicrystalline electronic states is stable under pressure. The
results given in Fig. 4 show that, as the pressure increases
from 0 to 30 GPa, the quasicrystalline electronic states move
gradually towards the Fermi level and their positions deviate
from all peaks of the density of states. So, it becomes easier
gradually to tune the Fermi level by electron or hole doping
to enhance the contribution of the quasicrystalline electronic
states. We will explain this phenomenon below. In Fig. 5,
we show the doping concentrations of electrons and holes
that are needed for the coincidence of the Fermi level with
these quasicrystalline states. For two-dimensional materials,

0 10 20 30
Pressure (GPa)

0.4

0.6

0.8

1.0

D
op

in
g

co
n
ce

nt
ra

ti
on

(c
m

−2
) ×1015

electron

hole

FIG. 5. The concentrations of holes and electrons that are needed
to tune the Fermi level to meet the VBM and CBM.

the magnitude of the doping concentration ∼1014 cm−2 can
be realized easily by using ionic liquid gates experimentally
[40,41].

Our results show that the quasicrystalline electronic states
will lose the 12-fold symmetry if an electric field is ap-
plied. We adopt the k-space tight-binding method proposed
by Moon et al. [25] to understand this phenomenon. In this
method, a k0-related subspace is spanned by the Bloch func-
tions of the bottom layer at k = k0 + G̃ and those of the top
layer at k̃ = k0 + G. G(G̃) is any reciprocal lattice vector of
the bottom (top) layer. In this subspace, the interlayer coupling
rule [39] k + G = k̃ + G̃ is always satisfied. The interlayer
matrix element between two layers is written as

〈k, X |H |k̃, X̃ 〉 = 〈k0 + G̃, X |U |k0 + G, X̃ 〉
= T (k0 + G + G̃)e−iG̃·τX̃ eiG·τX , (6)

where H is the Hamiltonian, U is the interlayer interaction,
X (X̃ ) is the sublattice A or B (Ã or B̃), τX (τX̃ ) is the
position of the sublattice in the unit cell, and T (k0 + G + G̃)
is the Fourier component of the interlayer hopping function at
k0 + G + G̃. The notations without and with the tilde signs
stand for the quantities belonging to the bottom and top
layers, respectively. In the numerical calculation, cutting the
k space around k0 is needed to construct the Hamiltonian
[25]. In this paper, the k-cutoff circle covering the points
with |G̃| and |G| � G0 is adopted. Here, G0(= 4π√

3a
) is the

length of the smallest reciprocal lattice vector of graphene.
This 12-wave approximation, based on the fact that there are
12 k points inside the k-cutoff circle excluding k0, has been
proved to be enough to calculate the electronic properties of
30◦ twisted bilayer graphene [25]. After diagonalizing the
Hamiltonian, the E ∼ k0 dispersion relation can be derived.
We call it a quasiband structure to distinguish the effective
band structure obtained by the band unfolding method. It
is worth noting that, by comparing the quasiband structure
around k0 = � and the effective band structure around Q, the
good agreement between them also demonstrates the accuracy
of the 12-wave approximation. Enlarging the k-cutoff circle
to cover 182 waves [25] will be overcomplete and introduce
some redundancy bands. These redundancy bands cannot be
detected by ARPES measurements.

At k0 = � and under the 12-wave approximation after
folding the k points into the Brillouin zones of the two layers,
the subspace shrinks to the collection of the Bloch functions
at Qi (i = 0–5) for the bottom layer and those at Q̃i (i = 0–5)
for the top layer [see Fig. 1(b)]. By analyzing the eigenstates
of the 12-wave Hamiltonian, a hybridization picture shown
in Fig. 6 can be constructed to explain the deviation of the
quasicrystalline electronic states from the 12-fold symmetry.
The VBM (labeled by |δ〉) is the antibonding state after the
hybridization between |α〉 and |β〉, namely,

|γ 〉 = Cγα|α〉 + Cγ β |β〉 bonding,

|δ〉 = Cδα|α〉 + Cδβ |β〉 antibonding. (7)
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FIG. 6. The quasiband structures around k0 = � and the hybridization pictures for constructing the quasicrystal electronic states in the
(a) valence band and the (b) conduction band. The picture shows the example at the 0.1-eV/Å electric field and 5-GPa pressure. It shows
clearly that the electric field destroys the 12-fold symmetry of the quasicrystalline electronic states.

|α〉 and |β〉 are six-wave states of the bottom and top layers,
respectively. They can be combined by the Bloch functions as

|α〉 = 1√
6

5∑

i=0

(−1)i|Q−
i 〉,

|β〉 = 1√
6

5∑

i=0

(−1)i|Q̃−
i 〉, (8)

where

|Q−
i 〉 = 1√

2
|Qi, A〉 − |Qi, B〉),

|Q̃−
i 〉 = 1√

2
(|Q̃i, Ã〉 − |Q̃i, B̃〉). (9)

The CBM (labeled |χ〉) is the bonding state after the hy-
bridization between |λ〉 and |μ〉, namely,

|χ〉 = Cχλ|λ〉 + Cχμ|μ〉 bonding,

|κ〉 = Cκλ|λ〉 + Cκμ|μ〉 antibonding. (10)

|λ〉 and |μ〉 are also six-wave states of the two layers. They
have the form

|λ〉 = 1√
6

5∑

i=0

|Q+
i 〉

|μ〉 = 1√
6

5∑

i=0

|Q̃+
i 〉, (11)

where

|Q+
i 〉 = 1√

2
(|Qi, A〉 + |Qi, B〉),

|Q̃+
i 〉 = 1√

2
(|Q̃i, Ã〉 + |Q̃i, B̃〉). (12)

The spatial distributions of the four six-wave states are shown
in Fig. 6.

To explain concisely the phenomena about the quasicrys-
talline electronic states under the pressure and electric field,

we take the VBM as an example. The explanations also
apply to the CBM. If there is neither pressure nor elec-
tric field, the six-wave states |α〉 and |β〉 are degenerate.
The equivalent hybridization between them, namely, |Cγα|2 =
|Cγ β |2 = |Cδα|2 = |Cδβ |2 = 0.5 results in the 12-fold symmet-
ric hybridized states |γ 〉 and |δ〉. A finite pressure will not
destroy the degeneration of |α〉 and |β〉, and it enhances the
hybridization strength. So, applying a finite pressure can push
the quasicrystalline electronic state |δ〉 up towards the Fermi
level. If a finite electric field is applied, the energy splitting
between |α〉 and |β〉 will destroy the 12-fold symmetries of
the bonding and antibonding states |γ 〉 and |δ〉 because of the
deviation from the equivalent hybridization. As an example,
the hybridization picture for the case of 5-GPa pressure and
0.1-eV/Å electric field is shown in Fig. 6. The bonding and
antibonding states show the nonequivalent occupation num-
bers on the bottom and top layers, namely, the loss of the 12-
fold symmetry. For the pressure in the range of 0–30 GPa and
the electric field in the range of 0–0.2 eV/Å, the evolutions of
the occupation numbers of the VBM and CBM on the bottom
layer (|Cδα|2 and |Cχλ|2) are shown in Fig. 7. Two conclusions
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FIG. 7. The evolution of (a) |Cδα|2 and (b) |Cχλ|2 with the pres-
sure in the range of 0–30 GPa and the electric field in the range
of 0–0.2 eV/Å. The counterlines show four conditions where the
occupation number on the bottom layer deviates from 0.5 by 0.05,
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can be drawn from these results. One is that, although the
electric field makes the occupation numbers |Cδα|2 and |Cχλ|2
different from 0.5, the pressure can tune them back closer but
not equal to 0.5. It means that the 12-fold symmetry can be
partially recovered by applying a finite pressure. The reason
behind this is that, for a fixed electric field, a higher pressure
can cause shorter interlayer distance and, therefore, smaller
on-site energy difference between the two layers. Another
conclusion is that the 12-fold symmetry of the CBM is easier
to be destroyed than that of the VBM. This is attributed to
stronger hybridization strength in the valence band than that
of the conduction band (see Fig. 8).

IV. CONCLUSIONS

By using the tight-binding model, we study the depen-
dence of the quasicrystalline electronic states on the external
pressure and electric field. We confirm that the pressure can
push the energies of these 12-fold symmetric states towards
the Fermi level. This phenomenon is attributed to the stronger
hybridization between six-wave states of the two layers under
higher pressure. Furthermore, the electron or hole doping
around 4 × 1014 cm−2 can tune the Fermi level to meet these
quasicrystalline electronic states. It can make 30◦ twisted
bilayer graphene manifest the quasicrystalline character in the
electronic property. Moreover, the electric field will destroy
the 12-fold symmetry of these states. Comparing with the
12-fold symmetric state in the valence band, the 12-fold
symmetry of the state in the conduction band is easier to be
destroyed. This is because of stronger hybridization in the
valence band than that of the conduction band. Importantly,
applying external pressure can partially recover the 12-fold
symmetry of these states against the electric field by reducing
the on-site energy difference between two layers.
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