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Confined electrons in effective plane fractals
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As an emerging complex two-dimensional structure, plane fractal has attracted much attention due to its novel
dimension-related physical properties. In this paper, we check the feasibility to create an effective Sierpinski
carpet (SC), a plane fractal with Hausdorff dimension intermediate between one and two, by applying an external
electric field to a square or a honeycomb lattice. The electric field forms a fractal geometry but the atomic
structure of the underlying lattice remains the same. By calculating and comparing various electronic properties,
we find parts of the electrons can be confined effectively in a fractional dimension with a relatively small field,
and representing properties are very close to these in a real fractal. In particular, compared to the square lattice,
the external field required to effectively confine the electron is smaller in the honeycomb lattice, suggesting that
a graphene-like system will be an ideal platform to construct an effective SC experimentally. Our work paves a
way to build fractals from a top-down perspective and can motivate more studies of fractional dimensions in real
systems.
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I. INTRODUCTION

Different from crystal with translation symmetry, a frac-
tal has a self-similar hierarchical structure, where the whole
system is exactly or approximately similar to a part of itself.
The most prominent mathematical feature of fractals is the
non-integer Hausdorff dimension dH [1,2]. Recent experimen-
tal developments in nanofabrication, including artificial lattice
fabrications [3–5], nanolithography [6], and etching methods
[7,8], provide an opportunity to create high-quality arbi-
trary nonperiodic two-dimensional (2D) structures, such as
plane fractals. Practically, nanometer-scale Sierpinski hexag-
onal gasket [9] and Sierpinski triangle gasket [10–12] have
been achieved by molecular self-assembly, chemical reaction
method, and atomic manipulation. These advances have also
promoted theoretical research in this field, showing fasci-
nating electronic and optical properties. For examples, the
box-counting dimension of the quantum conductance fluctua-
tion in the Sierpinski carpet (SC) is proved to be relevant to the
Hausdorff dimension of its geometry [13], and the sharp peaks
appear in the optical spectrum due to electronic transitions
between a set of specific state pairs confined in the SC at
specific length scales [14]. More theoretical calculations about
electronic transport [15,16], quantum Hall effect [17,18], plas-
mon [19], flatbands [20–22], energy spectrum statistics [23],
and topological properties [24–26] suggest its future potential
applications in electronics and optoelectronics.

Currently, fractals are mainly constructed by bottom-up
nanofabrication methods where the system is assembled with
atoms and molecules as a building unit [9–12]. However, these
bottom-up approaches are limited by the number of itera-
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tions and not appreciated to fabricate large fractals. Different
from bottom-up direct synthesis, plane fractals may be built
from crystal by external modification. For example, antidot
lattices, which have periodic arrays of holes in graphene and
other two-dimensional materials [27–33], can be created by
employing electron beam evaporation, electron beam lithog-
raphy, and ion milling tools [34–37]. It is a natural extension
of this methodology to construct plane fractals from two-
dimensional materials. However, the main limitation of this
approach is that the size and position of holes are difficult to be
controlled precisely. On the other hand, instead of removing
sites/atoms to create holes, if there is an energy barrier be-
tween the hole and nonhole regions, electrons belonging to the
original hole region cannot hop to the nonhole region, so that
electrons in the nonhole region will be confined effectively in
a space with fractal geometry. This top-down approach might
be possible to form an effective fractal from two-dimensional
materials with surface doping [38–42] or external electric
fields [43–47]. In this paper, we will check numerically the
possibility to create an effective fractional space for electrons
without destroying the atomic structure of the underlying
crystal. To this end, we calculate the electronic properties of
electrons in effective fractals with different external electric
fields, and compare them to the corresponding real fractals,
allowing us to figure out the minimum requirement to form
a fractional space for electrons. Our theoretical results will
provide useful information for the construction of large-scale
fractals via a top-down approach.

The paper is organized as follows. In Sec. II, we describe
the theoretical model and details of our numerical methods.
In Sec. III, we perform the calculations of various electronic
properties of different effective fractals, including density of
states (DOS), quasi-eigenstates, quantum conductance, and
the box-counting dimension of the conductance fluctuation,
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FIG. 1. Schematic representation of the square-lattice Sierpinski
carpet (a) and the honeycomb-lattice Sierpinski carpet (c) with dif-
ferent iteration I . The width of the sample is W lattice cells [e.g.,
(a) I = 3, W = 54; (c) I = 2, W = 33]. (b) and (d) illustrate the
corresponding effective SC where we add opposite on-site potential
in the different regions, namely, adding −V in the uncolored region
and V in the colored (red) one. Here we label the uncolored region
as Area I, and the colored region as Area II in context.

and compare these properties with real fractals. A brief sum-
mary is given in Sec. IV.

II. MODEL AND METHODS

We model a system described by a single-orbital tight-
binding Hamiltonian of the form

H = −
∑
〈i,j〉

ti jc
†
i c j +

∑
i

Vic
†
i ci. (1)

where ti j is electron hopping between two nearest-neighbor
ith and jth sites and Vi denotes the on-site potential of the
ith site. c†

i and c j are creation and annihilation operators. The
geometry of square- and honeycomb-lattice based Sierpinski
carpets are shown in Figs. 1(a) and 1(c), respectively. Here
we introduce notations SC-� and SC- � to denote the square-
and honeycomb-lattice based Sierpinski carpets. When SC
changes from Ith to (I + 1)th iteration, the unit is repli-
cated N = 8 times larger in area and L = 3 times larger
in width. The Hausdorff dimension is dH = logL N � 1.89.
The effective SC-� and SC- � are obtained by introducing
position-dependent on-site potentials in a rectangular square
or honeycomb lattice with the same width (W ) as their cor-
responding real SCs. The potentials are introduced in the
following way: if the site belongs to the hole region in real
SC, we set Vi = V ; otherwise, Vi = −V . In this way, a struc-
ture with a fractal geometry is formed in the region where
all on-site potentials are −V [see the uncolored Area I in

Figs. 1(b) and 1(d)], which is distinguished from the hole
region (Area II) where the on-site potentials are V . In the limit
V → ∞, we expect that the states in the two regions with
Vi = −V and Vi = V will be separated completely in energy
spectrum. However, it is not clear whether it is possible to
confine electrons effectively in a fractional dimension if V is
finite. It is therefore important to calculate the properties of the
effective fractals with various finite V and compare them to
real fractals. We want to emphasize that, although here we add
Vi = −V in Area I and Vi = V in Area II, one can also switch
the values of potentials between two areas, namely, Vi = V in
Area I and Vi = −V in Area II; then there will be an exchange
of the energy spectrum with respect to E = 0. Furthermore,
one can also choose to add only Vi = −2V in Area I and keep
the on-site potential in Area II unchanged as zero, or only
add Vi = 2V in Area II. These different settings of on-site
potentials only shift the whole spectrum with a constant value
in the energy spectrum, leaving no change of the electronic
properties. To realize these structures in the experiments, it
should be easier to manipulate just one area of the sample,
either Area I or Area II. Practically, we suggest applying an
electric field in Area II (the original hole region), as it contains
much less sites compared to Area I (the region with fractal
geometry).

In order to check the validity of proposed effective frac-
tals, we will calculate their electronic and transport properties
with different but finite V . As a comparison, the properties
of corresponding real fractals with the same size would be
calculated as well. As some of the systems considered in this
paper contain a very large number of sites, it is numerically
expensive to do all calculations based on diagonalization.
Thus, we use the so-called tight-binding propagation method
(TBPM) to calculate the electronic properties, including the
DOS and quasi-eigenstates, which are superposition of de-
generated energy eigenstates [48]. TBPM allows us to carry
out calculations for rather large systems, up to hundreds of
millions of sites, with a computational effort that increases
only linearly with system size. The DOS is calculated via the
Fourier transform of the correlation function:

D(E ) = 1

2π

∫ ∞

−∞
eiEt 〈ϕ(0)|e−iHt |ϕ(0)〉dt . (2)

where |ϕ(0)〉 is an initial state defined by normalized random
superposition of all basis states

∑
n An|n〉 [49]. The quasi-

eigenstates are obtained by using the spectrum method [50].
After the Fourier transform of states at a different time during
the evolution |ϕ(t )〉 = e−iHt |ϕ(0)〉, it can be represented by
[48]

|ψ (E )〉 = 1√∑
n |An|2δ(E − En)

∑
n

Anδ(E − En)|n〉. (3)

For a finite system as a fractal, one can make an average from
different realizations of random coefficients An to get more
accurate results of DOS and quasi-eigenstates.

For the transport properties, we use a quantum transport
simulator KWANT to do the numerical calculations [51]. In
KWANT, the system considered is treated as a scattering re-
gion. The conductance is obtained from the scattering matrix
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FIG. 2. The DOS of SC-� (a) and SC- � (c) in different iterations. (b) The DOS of the effective SC-� for I = 5, W = 486 and on-site
potential V = 4t . (d) The DOS of the effective SC- � for I = 4, W = 298, and on-site potential V = 3t .

Si j , using the Landauer formula:

Gab = e2

h

∑
i∈a, j∈b

|Si j |2, (4)

where a and b refer to two electrodes.

III. RESULTS AND DISCUSSION

A. Density of states

The DOS of the SC-� with different I as a function of
energy is shown in Fig. 2(a). We change the number of it-
erations I from three to six, and it is clear that the DOS almost
converges at I = 5. Focusing on the SC-� with I = 5, the
fluctuation of the DOS appears featureless, and edge states
result in a central peak at E/t = 0. To study the effective
SC-�, we first construct a corresponding complete rectangu-
lar model, then add opposite on-site potentials onto different
areas as mentioned in Fig. 1(b). As we know, if V is infinite,
the two areas, with V or −V , will be separated completely in
the energy spectrum. If V is finite but large enough, we expect
that the states in the two areas can still be separated effec-
tively. Indeed, for a square lattice with only nearest-neighbor
hoppings (ti j = t), as described by the Hamiltonian in Eq. (1),
the energy range will be [−4t, 4t]; therefore, if V � 4t , the
eigenstates in the two areas will be separated in the energy
spectrum. As an example, the calculated DOS of the effective
SC-� with V = 4t is shown in Fig. 2(b). The DOS of the
effective SC-� is divided into two parts with a gap between
them. The left part ranging from E/t = −8 to 0 is contributed
by Area I with the negative on-site potential −V added, while

the right part ranging from E/t = 0 to 8 is contributed by
Area II with the positive on-site potential V added. The DOS
of the SC- � with different I is shown in Fig. 2(c) and the
results show that the DOS almost converges at I = 4. Three
peaks are found at E/t = 0, and E/t = ±1, respectively. The
central peak at E/t = 0 originates from the edge states local-
ized along with the zigzag terminations over the sample, and
the peaks around E/t = ±1 are derived from the Van Hove
singularities, similar to those in pristine graphene. If we apply
different on-site potentials in a honeycomb lattice to form the
effective SC- � , we see similar effects as in the effective SC-�
that the energy eigenstates are separated into two groups. If
2V is not smaller than the width of the energy range (6t) of
a pristine honeycomb lattice described by Eq. (1), the energy
gap between these two groups in an effective SC increases
with increasing V . Inversely, the gap decreases as V decreases,
and the two groups overlap when V < 4t for the effective
SC-� and V < 3t for the effective SC- � . For effective SC,
the separation of the DOS can be explained by the competi-
tion between on-site potential and hopping. Actually, on-site
potential with opposite signs in these two regions leads to
a 2V potential barrier between them. If hopping t is much
smaller than 2V , the electron would be unlikely to hop from
Area I to Area II, and vice versa. In the rest of the paper, most
calculations are performed for the SC-� with I = 5, the SC- �

with I = 4, and their corresponding effective SCs, as these
systems are large enough to have converged DOS. We want to
mention that, although the converged iterations for SC-� and
SC- � are different, their sites are in the same order. Indeed, the
number of sites of the effective SC-� with I = 5 is 236 196,
and the number of sites of the effective SC- � with I = 4 is
205 024.
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FIG. 3. (a) The comparison between converged DOS of SC-� with I = 5, W = 486 and corresponding effective ones with different on-site
potential V . (b) The comparison between converged DOS of SC- � with I = 4, W = 486, and corresponding effective ones with different on-site
potential V .

As we see that finite electric fields with V = 4t for effec-
tive SC-� and V = 3t for effective SC- � are large enough
to separate the states in Area I and Area II, but it remains
unclear whether the states in Area I are the same as those in
the real SCs or not. Thus, we calculate the DOS of effective
SCs and compare them to the corresponding real SCs. We also
change the value of V to study the converging behavior of the
states in effective SCs. As the states in the effective fractal are
created after applying uniform on-site potential −V in Area
I, the center of the energy spectrum of these states has an
energy shift −V with respect to the neutrality point (E = 0)
of the original lattice, and therefore, the comparison of the
DOS should be based on the spectrum with this energy shift.
In Fig. 3, after applying the energy shift, we see clearly that
the DOS of an effective SC approaches to the real SC with the
increment of V . The difference between the real and effective
SCs is mainly attributed to the states at the center of the
spectrum. In Fig. 3(a), we see that, except for the central peak,
the DOS of the effective SC-� with V = 5t is basically the
same as that of the SC-�. However, the central peak does not
appear until V = 10t , suggesting that the states at the central
peak are more difficult to be reproduced compared to the other
states. In Fig. 3(b), similar behavior is found in the DOS of the
effective SC- � . Interestingly, three Van Hove singularities at
0t and ±1t are not consistent with those of the SC- � even with
V = 20t , while the other part of the DOS has been converged
when V = 3t . Based on these results, we conclude that the
reproduction of exactly the same spectrum of the DOS over
the whole energy range is difficult and requires a very large
external field V . All the other states which are not around
the Van Hove singularities are easier to be reproduced in the
energy spectrum with a much smaller V .

B. Quasi-eigenstates

In Fig. 4(a), we show the real-space distribution of the
quasi-eigenstates at E/t = 0 of the SC-�. In addition to the
central peak, we also show the quasi-eigenstates at E/t =
−3.79 which is away from the Fermi level [Fig. 4(c)]. In
Figs. 4(b) and 4(d), the real-space distribution of correspond-
ing quasi-eigenstates of the effective SC-� are plotted. The
comparison of the amplitude distributions shows that the

FIG. 4. (a), (c) The real-space distribution of the quasi-
eigenstates of the SC-� with I = 5, W = 486 at the central peak
E/t = 0 and the edge peak E/t = −3.79. For comparison, we show
the real-space distribution of the quasi-eigenstates of the effective
SC-� with V = 3t at the corresponding energy in (b) and (d).
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FIG. 5. (a), (c) The real-space distribution of the quasi-
eigenstates of the SC- � with I = 4, W = 298 at the central peak
E/t = 0 and the edge peak E/t = −2.95. For comparison, we show
the real-space distribution of the quasi-eigenstates of the effective
SC- � with V = 3t at the corresponding energy in (b) and (d).

quasi-eigenstates of the effective SC-� with V = 3t are in
good agreement with those of the SC-�, suggesting that not
only the energy spectrum but also the individual states in this
effective SC-� are very similar to real SC-�. As for SC- � ,
we also study the effect of the on-site potential on quasi-
eigenstates by comparing the calculated quasi-eigenstates of
the SC- � and the effective one. As shown in Fig. 5(a), the
quasi-eigenstate at the central peak with E/t = 0 originates
from the edge states caused by the zigzag edge termination.
However, the corresponding quasi-eigenstate of the effective
SC- � with V = 3t is mainly localized at the top and bottom
zigzag edges of the whole sample [see Fig. 5(b)]. This also
explains why the central peak in the DOS of SC- � is difficult
to be reproduced in the effective SC- � by applying finite
on-site potentials. In fact, the zero models in the honeycomb
lattice are associated with the sites where the sublattice sym-
metry is broken, while in the effective SC- � , only the top and
bottom zigzag edges fulfill this condition. The finite poten-
tial difference at the boundary of effective “zigzag edges” in
the honeycomb lattice is not enough to break the sublattice
symmetry or create highly localized zero models as those in
the real zigzag edges. However, if we are looking at states
away from the “neutrality” point, the quasi-eigenstates of the
effective SC- � are in good agreement with those of SC- � [see
the comparison of the states in Figs. 5(c) and 5(d)].

In order to get more quantitative information, we sum over
the amplitudes of the normalized quasi-eigenstate in Area I,
which can be a measure of the total distribution. We call this
quantity as the occupation number R, and if R is 1, then all
the states at the corresponding energy are distributed only in
Area I, meaning that an electron with this energy is completely
confined in the “fractal” region. If R is close to 1, then the
electron is mostly confined in Area I, with only a small ex-
tension to space outside the fractal region. Of course, on the
contrary, if R is 0, then the electron has no access to any site

TABLE I. The occupation number R of the effective SC-� with
iteration I = 5 and width W = 486. Two cases where on-site poten-
tial V = 0.5t (left panel) and V = 3t (right panel) are shown.

V = 0.5t V = 3t
E/t R (%) E/t R (%)

−4.399 95.2 −6.824 99.5
−4.258 92.8 −5.648 99.0
−4.088 92.7 −4.647 98.9
−3.832 90.0 −3.023 99.5
−3.650 91.4 −1.512 98.2

in Area I. In Table I, we show the occupation number R of
some quasi-eigenstates in effective SC-� with V = 0.5t and
3t . Here, these states are randomly selected from the energy
region belonging to the fractal part of the spectrum, i.e., within
the range of [Eb − V, Eb + V ], where Eb are the lowest energy
eigenvalues of the pristine square lattice. From the calculated
results, we see that with V = 3t , the occupation number R is
about 98%–99% for all considered states, indicating that these
electrons are indeed confined in the fractal geometry. Surpris-
ingly, even for a small value of V = 0.5t , although the energy
spectrum shown in the DOS is completely different from the
real fractal, the occupation number of quasi-eigenstates can
still reach 90%, much larger than we expect. For honeycomb
lattice (shown in Table II), with a similar analysis we see even
better confinement of electrons, and the occupation number R
can reach larger values compared to the square lattice with the
same V . For example, with V = 0.5t , calculated R in effective
SC- � are all larger than 94%, indicating that electrons in the
honeycomb lattice are more easily to be confined in a fractal
geometry compared to the square lattice. Our calculations of
the occupation number R in effective fractals indicate that
to confine an electron effectively in a fractal dimension, the
applied on-site potentials could be much smaller than the
values one expected.

C. Quantum fluctuations of conductance

Our previous quantum transport calculations of some frac-
tals in Ref. [13] show a very interesting and unique character
of electrons confined in a fractional space, namely, there is
a high correlation between the quantum conductance fluctua-
tions (CFs) and the geometry dimension of the fractal. Fractal
CFs have been verified in many systems, such as chaotic

TABLE II. The occupation number R of the effective SC- � with
iteration I = 4 and width W = 298. Two cases where on-site poten-
tial V = 0.5t (left panel) and V = 3t (right panel) are shown.

V = 0.5t V = 3t
E/t R (%) E/t R (%)

−3.461 99.6 −5.574 99.9
−3.235 98.9 −4.343 99.8
−3.008 97.4 −3.051 99.0
−2.808 97.1 −1.909 99.7
−2.607 94.4 −0.504 99.6
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FIG. 6. Energy dependence of the conductance G(E ) (in units of e2/h) of the (real and effective) SC-� (a) and SC- � (b) with different V .
I = 3 and W = 54 for the (real and effective) SC-� and I = 2, W = 33 for the (real and effective) SC- � . Left and right panels refer to central
lead and diagonal lead configurations, respectively. Here, the convergences of the conductance fluctuations in different geometries and lead
configurations are presented, and we see that for similar lead configurations, the coverage of the spectrum in SC- � is faster than SC-�. It is
worth mentionng that we show here results with relatively smaller samples because the conductance fluctuation of a large system is too dense
for visual comparison.

systems [52–54], quantum billiard [55], gold nanowires [56],
and diffusive and ballistic semiconductor devices [57]. In
Ref. [13], the quantum CF of a fractal is characterized by the
dimension of its conductance spectrum, which is calculated by
the standard box-counting (BC) algorithm [58]. For a fractal
with an infinite ramification number (in the limit of infinite
size) [59], such as Sierpinski carpet, the box-counting dimen-
sion of the quantum CF is found to be close to the geometry
dimension of the fractal [13]. However, for a fractal with a
finite ramification number, there is no such kind of connection
between the two types of dimensions. As our main purpose of
the current paper is to find how to create an effective fractional
dimension by using finite on-site potentials, it is interesting to
check whether a similar correlation exists in these effective
fractals.

First, in order to study the effect of the on-site potential
V on transport properties of the effective SC, we calculated
the energy-dependent conductance Gab(E ) for a configuration
with central leads (two leads are attached to the center of the
left and right sides of the scattering region) and one with
diagonal leads (one lead attached to the bottom of the left
side and the other lead attached to the top of the right side
of the scattering region) using Eq. (4) as implemented with
KWANT [51]. In the absence of a magnetic field, the quantum
conductance can reach the maximum by changing the number
of leads, leads positions, and leads width [13].

The numerical results of Gab(E ) with different lead con-
figurations are obtained for the effective SC-� [Fig. 6(a)]
and the effective SC- � [Fig. 6(b)]. As the whole spectrum
contains many fluctuations which make the curve quite noisy,
we show here only parts of the spectrum in order to compare
it more clearly to the result of the corresponding real fractal.
Here, similar to Fig. 3, an energy shift is introduced for the
comparison of the spectrum due to the applied on-site poten-
tial. We notice that with this energy shift, the spectrum of
conductance fluctuation in effective fractals is similar to the
one shown in the real fractal, and the agreement is better if
V is larger. Furthermore, with the same amplitude of V , the
agreement in the effective fractals based on the honeycomb
lattice is better than those based on the square lattice [see
the different converging speeds shown in Figs. 6(a) and 6(b)].
This indicates that it is relatively easier to create an effective
fractal by applying on-site potentials in the honeycomb lattice
than in the square lattice. We also want to mention that there
is an extra shift of the conductance spectrum which is not
captured by the simple shift of E = −V . If V is larger, this
extra energy shift is smaller, indicating that the origin of this
extra shift could be due to the finite value of V . A complete
understanding needs more analytical works that are beyond
the scope of this paper.

The spectra of the quantum conductance fluctuations
shown in Fig. 6 are indeed also fractal, and their dimensions
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FIG. 7. BC algorithm analysis of the CFs for SCs. (a), (b) BC dimension of the SC-� with I = 5, W = 486 and the corresponding effective
ones with different V . (c), (d) BC dimension of the SC- � with I = 4, W = 298 and the corresponding effective ones with different V . Data in
(a) and (c) and (b) and (d) refer to central lead and diagonal lead positions, respectively.

can be calculated numerically by using the box-counting al-
gorithm [58]. In particular, here we count the number (N ) of
squares with different size r which continuously and com-
pletely cover the graph of conductance [G(E )]. For large
values of r, the squares are too large to distinguish the features
of the graph and N grows slowly as r decreases. Once r
decreases to a small enough value where the squares resolve
every single point of the raw data of G(E ), N is expected to
saturate to the number of points in the raw data. Actually, there
is an intermediate r called the “scaling region” where scaling
is linear in a log-log plot. Furthermore, the BC dimension of
the CFs is determined by the slope d [13]. For large V , as the
graph G(E ) of the effective fractals is very close to the real
one, it is not surprising that the BC dimensions of these effec-
tive fractals agree very well with their geometry dimension,
similar to those found in Ref. [13]. In fact, this agreement con-
verges even faster than other electronic properties considered
in previous sections, namely, the DOS and quasi-eigenstates.
For example, as our numerical results show in Figs. 7(a) and
7(b), the BC dimension of the effective SC-� converges to the
value of V = 2t for central lead configurations, and V = 3t
for diagonal lead configurations, respectively. For the effective
SC- � , the agreement occurs earlier with smaller V ; as one
can see from Figs. 7(c) and 7(d), the cases with V = 1.5t
for the central lead configurations and V = t for the diagonal
lead configurations are enough to reproduce the same BC
dimension as in the real fractal.

IV. SUMMARY

In this work, we proposed a way to construct effective
fractals from two-dimensional crystals without breaking the

atomic structure. We applied an external electric field with
fractal geometry; parts of the electrons are confined effec-
tively in a fractional dimension, and their electronic properties
are very similar to those in the corresponding real fractal.
To study the effect of the external field quantitatively, we
performed calculations of the DOS, quasi-eigenstates, and
conductance of the effective SC with various on-site poten-
tial V and compare them with real SC. Although a perfect
reproduction of a fractal requires quite large V , we can still
find many electronic states in the effective SC which are very
similar to those in the SC even with small V . Furthermore, the
box-counting dimension of the quantum conductance fluctu-
ations in the effective SC converges to the value of SC with
much smaller V compared to other calculated properties such
as the DOS and quasi-eigenstates.

Our numerical results indicate that, depending on the prop-
erties measured in the experiments, the critical electric field to
build an effective fractal will also be different. To calculate the
box-counting dimension of quantum conductance fluctuations
turns out to be the easiest way to indicate the underlying
geometry dimension, but from a practical point of view, the
measurement of the whole spectrum of the conductance re-
quires deep doping of the system which may be too difficult
or even unreachable currently. In fact, as we show in the
comparison of the DOS and quasi-eigenstates, although the
states at the center of the energy spectrum are not reproducible
with small on-site potentials, the other states can be much
easier to form with relatively small on-site potentials. The
difficulty to reproduce the states at or around the center of the
energy spectrum is because these states are mainly localized at
the sharp edges of the holes. For example, the midgap states
in SC- � are due to the breaking of the sublattice symmetry
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at the zigzag edges, and therefore cannot be reproduced by
the finite on-site potential difference at the boundary between
two areas. Thus, we suggest that one should probe the states
which are not at the center of the spectrum in order to check
whether they are confined effectively in a fractional geometry
or not. The comparison of the results with different under-
lying lattices also suggests that the graphene-like systems,
such as graphene, hexagonal boron nitride, MoS2, and other
transition-metal dichalcogenides which have underlying hon-
eycomb lattice, much more easily form an effective fractional
dimension with a small electric field.

As we discussed in the main text, in order to create an
effective fractional dimension, one can also apply the electric
field only on one area of the lattice, either on the original hole
region or the area with fractal geometry. Different ways to
apply the field will change the whole spectrum accordingly;
either shift all the states with constant energy, or just exchange
the states with respect to the center of the spectrum. All
the electronic properties of corresponding states remain the
same. Thus in practice, it would be more convenient to change
only the potentials in one region. For the Sierpinski carpet
considered in this paper, its geometry dimension is close to

two, the sites in the hole region have less numbers compared
to the fractal region; therefore it is much easier to manipulate
the hole region. For some other fractals, one may choose to
control oppositely the fractal region.

In conclusion, we propose a way to confine electrons in
an effective fractional dimension by applying an external
electric field with fractal geometry. Our work paves a way
to realize fractals from top to bottom without destroying the
atomic structure of the underlying lattice. One can also control
the electric field to make the whole process reversible, i.e.,
to create and destroy the effective fractional dimension by
changing the electric field. We believe our work will motivate
more experimental and theoretical studies of fractals in real
systems.
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