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Hall conductivity of a Sierpinski carpet

Askar A. Iliasov®,!?" Mikhail I. Katsnelson,' and Shengjun Yuan®?>'-f
VInstitute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
2Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology,
Wuhan University, Wuhan 430072, China

® (Received 22 July 2019; revised manuscript received 10 December 2019; published 13 January 2020)

We calculate the Hall conductivity of a Sierpinski carpet using Kubo-Bastin formula. The quantization
of Hall conductivity disappears when we increase the depth of the fractal, and the Hall conductivity is no
more proportional to the Chern number. Nevertheless, these quantities behave in a similar way showing
some reminiscence of a topological nature of the Hall conductivity. We also study numerically the bulk-edge
correspondence and find that the edge states become less manifested when the depth of Sierpifiski carpet is

increased.
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I. INTRODUCTION

Fractals were very popular in 1980 and various properties
of fractals were intensively studied at that time [1-3]. Most
of these works were focused on classical fractal systems;
at the same time, it turned out that quantum properties of
fractals are also unusual and interesting. For example, some
fractals have the Cantor-like energy spectrum, which makes
them similar to quasicrystals [4]. These studies of quantum
properties of fractal structures were of purely theoretical
interest. With recent technological advances, fractals can be
produced by both nanofabrication methods and manipulation
of individual molecules on metal surfaces [5-8]. This en-
hances the interest in a deeper understanding of the field. Re-
cent theoretical works concerning quantum effects in fractals
consider transport properties [9—11], plasmons [12], Anderson
localization [13,14], topological properties [15—18], and other
related topics [19-23]. The transport properties of electrons
roaming in a fractional space are of great interest due to
their possible experimental applications and deep connection
with topological properties, which definitely deserve more
attention.

The relation between conductivity and topological prop-
erties was established in a seminal work [24] by Thouless
et al. It was shown that the off-diagonal (Hall) conductivity
of two-dimensional electron gas in a perpendicular magnetic
field is proportional to the topological invariant called Chern
number. The derivation in Ref. [24] relies on the transla-
tional invariance of the system, thus the theory cannot be
directly applied to quasiperiodic or fractal structures. For
quasiperiodic systems, one can obtain nontrivial topological
properties of Hall conductivity by looking at the Brillouin
zone as a noncommutative manifold [25-27]. The same is
true for disordered systems [28,29]. To our knowledge, the
relation between Hall conductivity and Chern number is still
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an open question for the case of fractal. A clarification of this
issue could also provide a better understanding of fractional
topological order, another hot subject in condensed matter
physics [30,31].

It is also known for the systems with integer dimensions
that the quantization of Hall conductivity is closely related
to the existence of edge states, in the form of the so-called
bulk-edge correspondence [32-34]. The terms edge and bulk
can be well defined for systems without holes, or, at least, for
a system, which has an integer dimension and finite number
of holes. On the other hand, an infinite fractal has an infinite
number of holes, and the distribution of these holes is very
dense. Therefore the difference between edge states and bulk
states and their connections to the quantization of Hall con-
ductivity should be carefully checked. As an infinite fractal is
not numerically reachable, a practical way is to study various
approximations of finite fractals with holes of different scales.

In a recent work [15] Chern numbers of a Sierpifiski
carpet were calculated numerically. The authors found that
the Chern numbers are quantized in some energy regions;
in this sense, fractals still can possess nontrivial topological
properties. They also studied Hall conductivity by calculating
the variance of level spacings using the random matrix theory.
However, the applicability of this approach to fractal is ques-
tionable, since the latter, strictly speaking, is not a disordered
system. It was shown that the level-spacing distribution for
some kind of fractals and quasiperiodic systems can have
power-law behavior which cannot be described within the
conventional random matrix theory [35-37]. Even if one can
apply the latter to the spectrum of Sierpifiski carpet, it is
not enough to make a definite conclusion on the quantization
of Hall conductivity. Hence, the variance of level spacing
distribution is not the most reliable quantity to study the
localization and quantization of Hall conductivity in fractals,
and one needs to calculate them directly, if possible.

In this work we examine relations between Hall conductiv-
ity and topological properties of Sierpiniski carpets. In order to
do this, we calculate numerically the Hall conductivity and the
so-called quasieigenstates for various iterations of Sierpinski
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FIG. 1. The examples of studied fractal structures. The size of
the large square is 37/ x 37 sites with D; = 4 and different number
of iterations I;. With every iterations, new holes are deleted. The size
of the smallest holes is 327~ x 3Ps=/r,

carpets and investigate their relations to the fractal depth. We
also compare our results with the recently calculated Chern
numbers obtained in Ref. [15].

II. THE MODEL

To study fractal structures, we use the single-orbital tight-
binding Hamiltonian in the nearest-neighbor approximation,
that is, the same model as in Refs. [9,10]:

H=—t ei¢[fc;fcj, (1)

(ij)
where clT creates fermion on a lattice site i, and (ij) denotes
the nearest-neighbor sites belonging to the studied fractal.
The influence of magnetic field is introduced by the standard

Peierls substitution: ¢;; = 27 /P fl.J Adr, where A is the
vector potential and &y = hc/e is the flux quantum. We use
Landau gauge A = (—By, 0, 0).

We start with a square lattice of the size 377 x 3P7, Then,
we iteratively add holes, which gives us the realizations of
Sierpiriski carpet with varying depths. At first, we add the
central hole of size 3P/~! x 3P/~ then we add holes with
size 3P/72 x 3P7=2, and so on. We can stop at any number of
iterations / less than Dy and the maximum depth of fractal on
a given lattice is Dy. If Ir = Dy, the size of a hole is equal to
one site. Examples of different iterations are given in Fig. 1.

These structures have two parameters Iy and Dy, which
describe various approximations of Sierpinski carpet. They
also represent a transition from the usual square lattice with
dimension 2 to a Sierpifiski carpet with fractional dimension
equal to In8/1In 3.

In order to calculate the density of states and Hall con-
ductivity we use the real-space approaches described in
Refs. [38—41]. Using these methods, we are able to calculate
electronic properties for six iterations of Sierpifiski carpet
without any diagonalization.

III. RESULTS

A. Density of states

We calculate density of states (DoS) for different fractal
depths and iterations using a method based on the time evo-
lution operator [38,39]. We start the evolution of a quantum
system with a random initial state |y), which is normalized so
that | |> = 1. The density of states is calculated via Fourier
transform of the correlation functions by averaging over initial
random samplings [38,39]:

d(e) = (Ylé(e — H)|Y)

1 +o00 ) -
eT(Yle M Y )dr.

2 )

Since density of states is a self-averaged quantity, it does
not depend on the choice of the state |¢) for large enough
systems.

In Fig. 2, we show the calculated density of states for
various magnetic fields with ®/®, changing from 0 to 0.5,
and here @ is the magnetic flux through the smallest element
for a given structure. The energy E is measured in values of
hopping ¢ of the Hamiltonian (1). These pictures of Hofstadter
butterflies [42] are calculated for D =6 and Iy =0,2,4,5
in Fig. 2, which demonstrates fractal structure of states and
gaps due to additional period in hoppings associated with the
magnetic flux.

From these pictures one can see that for Iy = 0, 2, 4 DoS
is basically the same for all magnetic fields. The structure of
Hofstadter butterfly with Iy = 5 is different from the previous
cases. Many more states appear and small gaps open for some
magnetic fields [new red lines and white dots in Fig. 2(d)].
Therefore, Ir =5 seems to be the minimal depth that is
needed to catch the peculiarities of quantum states in this
particular fractal.

In Fig. 3, DoS is displayed for fractals with Iy =5, Dy = 6
and Iy = Dy = 6, ®/®Py = 0.25. The change from Iy =5 to
Iy = 6is clear: A gap opens in the middle of the spectrum, and
there are more states between peaks (around energy £ = 2).
Density of states for /; = 5 is flatter in that region.

We also calculated DoS for Iy = Dy =4 and Iy = Dy = 5.
The results are visually almost indistinguishable from Iy =
Dy = 6. Hence, DoS converges for samples with maximum
number of iterations and approaches the thermodynamic limit
of a full fractal. For cases with Iy < Dy < 6 we also observe
that DoS changes only a little while a transition to another
regime occurs when changing from Iy <Dy —1 to Iy =
Dy — 1. Due to this transition, one cannot properly approx-
imate the full fractal, if the smallest holes are absent in the
sample.

The occurrence of the transition can be explained by the
following reason. Before reaching the transition point the
sample can still be treated as a bulk and the effective dimen-
sion is an integer. The holes in the sample can be seen as
some additional disorders. When I is equal to 5 the distance
between holes becomes comparable to the size of a site. Only
at this point, the effective dimension of a sample becomes
noninteger. The difference between cases Iy =5 and Iy = 6
also can be explained by the difference in their noninteger
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FIG. 2. Pictures of DoS depending on magnetic field—Hofstadter butterflies (magnetic field B corresponds to variations of ®/®, from
0 to 0.5) for different iterations of Sierpiriski carpet in a square of size 3P/ x 3P and D ;= 6: (a) shows I; = 0 iteration, (b) shows I; =2
iterations, (c) shows Iy = 4 iterations, (d) shows I; =5 iterations. The differences between (a), (b), and (c) are small. New peaks and gaps

appear in the picture (d).

dimensions. Proper approximation to Sierpinski carpet is only
achieved when Iy = Dy.

Let us consider a square with one hole /; =1 and then
increase the number of sites D. This is an approximation of
a two-dimensional system. The cases of Dy = 1 and Dy =2
correspond to the Sierpinski carpets with Dy = Iy and Dy =
Iy — 1, since the average distances between holes are 1 site
and 3 sites. These systems do not behave as two-dimensional
systems: Dy = Iy = 1 is just a one-dimensional cycle. How-
ever, in the case of Iy =1, for Dy = 3, the sample already
has DoS similar to a two-dimensional sample. Therefore, we
assume that samples with I < Dy — 1 approximate systems
with integer dimensions and the transition of physical param-
eters should happen when Iy = Dy — 1.

‘We can think about this effect as a crucial property of exact
scaling symmetry of fractals. Even the smallest breakage
of scaling symmetry leads to an effective integer dimension
rather than fractional. Every site is an edge site in a sample
with maximum fractal depth. This condition strongly restricts
the geometry of paths in the sample. We can assume therefore
that the scaled geometry plays a decisive role in the properties
of a fractal and it is closely connected to the space of paths in
Sierpiriski carpet.

B. Hall conductivity

In order to calculate Hall conductivity, we use the approach
from Refs. [40,41]. The method is based on the so-called

Kubo-Bastin formula:

hie? dG*
Oup = % | def@r <va8(e - H)uﬂ%
dG~(e)
—vy8(e — H)vg——2
Vo8 (€ Jvg 7c >

where A is the area of the sample, f(¢) = m is
the Fermi-Dirac distribution, T is the temperature, u is the
chemical potential, v, is @ component of velocity operator,
and G* = 1/(e — H %+ in) are the Green’s functions. In this
formula we also average over random samplings as we did
for the density of states. We can expand Green’s functions
and delta function in Chebyshev polynomials and then for the
conductivity we obtain:

4R 4 /1 3
Opp = — ——
P~ 7A AE?

where € is rescaled energy within [—1, 1], AE is the energy
range of spectrum, pc‘,"fn(H ) and I';,,,,(€¢) are described by the
following formulas:

Iym(€) = T,,(€)(€ — m\/l— inarecos(é)
+ T,(€)(€ + imme—imarccos@))

! (f)z)z Z Lo @1l (H) (2)

and
8Em&n

M) = s ST o)
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FIG. 3. The density of states for Sierpiniski carpet with Iy =5,
Dy =6 and Dy =I; = 6 (maximum number of iterations for the
square with size 3¢ x 3°), ®/®, = 0.25. A gap appears in the middle
of the spectrum for I; = 6, in comparison with I; = 5.

We use Jackson kernel g, to smooth Gibbs oscillations due to
truncation of the expansion in Eq. (2) [40].

Our results for o,, are shown in Fig. 4. The Hall con-
ductivity was calculated for ®/®¢ = 0.25, Dy = 6, and Iy =
0,4,5,6.

The Kubo-Bastin formula is derived under very general
assumptions and can be used to study linear response for
any Hamiltonian within single particle approximation. The
only restriction of the formula is that it neglects the electron-
electron interactions. For example, the Kubo-Bastin formula
was successfully applied to systems with irregularities, such
as disordered systems [40], which also lack translational
symmetry, and it can be used for fractals as well.

The Hall conductivity behaves similarly to DoS, when
changing the structure of the fractal. The differences between
Iy =0 and Iy = 4 are quite small, although there are more
fluctuations in the case of Iy = 4. The profiles of the Hall con-
ductivity are overall similar, for example, there are plateaus,
which correspond to relatively small values of DoS, in the
middle of the spectrum. These plateaus in Hall conductivity
are related to topological invariants: Hall conductivity takes

value of ¢?/h multiplied by the integer of the Chern number.
One can see a clear transition at Iy = 5 iterations: The plateaus
in the middle of the spectrum vanish at /; = 5 and the fluctu-
ations become much stronger.

The picture of Hall conductivity for Iy = Dy = 6 demon-
strates a completely different behavior. We can compare these
results to Chern numbers calculated in Ref. [15] [Fig. 3(c) in
that article] for Iy = Dy = 4. In general, Hall conductivity
looks similar to Chern numbers, however, there are more
fluctuations and peaks that are absent in Chern numbers. One
can also notice that plateaus appear on the scale 1.5¢*/h, not
2 /h, which would be expected from values of Chern numbers
on these energies. The exact plateaus of Chern numbers are lo-
cated on the energies E = —1.5... —09and E =0.9...1.5,
and the almost quantized region is located around £2.5 with
the width of the order of 0.1. These regions are highlighted in
Fig. 4(d).

There are two regions which correspond to quantized
Chern number, around E = +1. These regions occur after
smearing of peaks in smaller iteration depths I and for larger
Iy they form regions resembling plateaus. The plateaus for
smaller /; are destroyed with increasing of /;. There remain
only small parts of them around E = £2.5 and E = +1, these
regions correspond to almost quantized Chern number. It is in-
teresting in the region around E = =1 there is no plateau even
with quantized Chern numbers. This has been checked with
averaging from different numbers of random samples until
fluctuations are stable. The central gap in DoS corresponds to
conductivity o,, = 0, as well as the Chern number is equal to
0. Therefore, we can conclude that the relation between Chern
numbers and Hall conductivity does not hold in noninteger
dimensions, although there are similarities in their behavior.
There is no quantized Hall conductivity plateaus as for Chern
numbers, but, nevertheless, disturbed plateaus appear exactly
in the regions of quantized Chern numbers.

We also checked the influence of disorders to the Landau
level spectrum and Hall conductivity by introducing random
vacancies in the samples. The results are shown in Fig. 5,
where we deleted around 20% of the sites randomly. We
see that the Hall conductivities are stable with respect to
the disorder. Moreover, there are less fluctuations on the
Hall conductivities in comparison with the results shown in
Fig. 4. These results indicate that the Hall conductivities of
fractals are stable under the presence of disorder as long as
the strength of disorder is not very strong. This property is
indeed the same as for systems with integer dimensions.

In fact, these results can be understood in a simple way.
The holes in a pristine fractal can be regarded as a kind of
disorder. Thus additional holes (single point vacancies) should
not affect the physical properties unless the disorder is too
large. However, there are still subtleties since the exact scaling
symmetry on all scales is important for building a correct
approximation of the fractal.

C. Quasieigenstates

It is known that the edge states in quantum Hall systems
are closely related to their topological properties [32,33,43].
Occurrence of the edge states corresponds to quantized Chern
numbers (bulk-edge correspondence). Therefore it is natural
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FIG. 4. The Hall conductivity for different iterations of Sierpifiski carpet in a square of the size 3%/ x 3P/ and D; = 6 (®/®, = 0.25):
(a) is Iy = 0 iteration, (b) is Iy = 4 iterations, (c) is I; = 5 iterations, (d) is Iy = 6 iterations. As in Fig. 2, the differences between (a) and
(b) are small; only small fluctuations are added in (b). Picture (c) demonstrates transition to another phase, picture (d) is very different from
previous cases, the regions of quantized Chern numbers are shown by blue.

to assume that transitions with increasing Iy in DoS and
Hall conductivity will be seen in the edge states as well.
To explore this question we calculated quasieigenstates for
Sierpinski carpet. Quasieigenstates and probability current
were calculated by the same method of averaging [39]. For
the probability current, we use the formula [44]:

h
i=Re(Y*vip) = — Im(y* Vi) — LAl (3)
m, m,

First, let us take a look at states corresponding to plateaus
and peaks for some iterations with enough holes, but with
regular behavior of Hall conductivity. For more readable
pictures we used samples with size Dy = 5. Examples of bulk
and edge states for Iy = 3 iterations are shown in Fig. 6. Edge
states, which are shown on the left side of picture, correspond
to energies £ = 1.51 and E = 2.59. Bulk states, which are

(a) Hall conductivity Ir=5 Df=6

shown on the right panels, correspond to energies E = 1.09
and E = 2.83. Edge states are taken from the regions with
disturbed plateaus in Hall conductivity and bulk states from
slopes of peaks. We see that edge states can be localized along
holes on different scales i.e. only the central hole, holes of the
second iteration and the central hole, all holes up to the third
iteration and so on.

Examples of bulk and edge states for Iy =5 iterations
(i.e., fractal with maximum depth) are shown in Fig. 7.
Edge states, which are shown on the left panels, correspond
to energies E = 1.33 and E = 2.59. Bulk states, which are
shown on the right panels, correspond to energies £ = 1.57
and E = 2.83. The edge states on the left panel correspond
to the region of quantized and almost quantized Chern num-
ber. There is a reminiscence of the quantization in Hall
conductivity.

(b)Hall conductivity Ir=6 D=6
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FIG. 5. The Hall conductivity for Sierpifiski carpet with additional disorder in a square of the size 3/ x 3% and Dy = 6 (®/®, = 0.25):
(a) is Iy = 5 iteration, (b) is I; = 6 iterations. Approximately 20% of the sites are deleted. There are no visible differences from Fig. 4.
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(a) E=1.51

(b) E=1.09

(d) E=2.83

FIG. 6. Quasieigenstates for Sierpiriski carpet with size 3°f x
3Ps with Dy = 5 and I; = 3 iterations. Examples of edge states are
on the left: picture (a) E = 1.51, picture (c) E = 2.59. Examples of
bulk states are on the right: picture (b) E = 1.09, picture (d) E =
2.83.

We see that the edge states in the full fractal differ from the
edge states in Fig. 6. In the sample with Iy = 3 iterations, the
current is localized along borders in a homogeneous pattern,
there are just lines of currents along the edges. However, in
the full fractal, the current has a more complex pattern, for
example, it can be localized around small holes, which are
close to an edge. This deformation of edge current can be a

(a) E=1.33

(b) E=1.57

(d) E=2.83

FIG. 7. Quasieigenstates for Sierpifiski carpet with size 32/ x
3Pr with D; = 5 and I; = 5 iterations. Examples of edge states are
on the left: picture (a) E = 1.33, picture (¢) £ = 2.59. Examples of
bulk states are on the right: picture (b) E = 1.57, picture (d) E =
2.83.

reason of absence of flat plateaus in Hall conductivity even for
regions with quantized Chern number. We also see that bulk
states in a sample with I =5 iterations demonstrate more
symmetric behavior. This is, obviously, the manifestation of
full scaling symmetry of a fractal.

We see that for the energies £ = 1.33 and £ = 2.59, which
are in the regions of near-quantized and quantized Chern
numbers, the edge states remain to be well defined. However,
some part of plateaus of the previous iterations with the edge
states become bulk states. We also see that some bulk states
in different iterations have similar localization properties.
Accordingly, we can assume that there are states with different
effective scales. Some states spread over the rougher structure
of a sample; some states sit only around smaller holes.

We have made calculations of quasi-for various energies
and they all follow the described pattern. We see that the
quasieigenstates corresponding to the quantized Hall conduc-
tivity are localized along the edges for iterations smaller than
I; = 4 (with maximum possible number of iterations equal to
Dy =5). It is also worth noticing that all edges, namely, the
edges of the sample and the edges of the holes can contribute
to quasieigenstates. For most quasieigenstates which have
been calculated for various energies in the case of /I = 5 and
Dy =5, there is no obvious domination of edge states.

Here, we observe the same transition of quasieigenstates
as in DoS and Hall conductivity at /[y = Dy — 1 i.e. when the
number of iterations is one less than the possible number of
iterations. In the case of bulk states, it manifests as a more
symmetric picture of the current. In the case of edge states, it
manifests as a more complex localization along the edges, so
that some edge states become localized along smaller holes,
which are close to an edge.

IV. SUMMARY

We see that with increasing the depth of a fractal the
quantization of Hall conductivity disappears. However, there
is reminiscence of topological nature of quantization, namely
some plateaus remain but disturbed. We also see that for
Sierpiniski carpet the general relation between topological
invariants such as Chern numbers and Hall conductivity does
not fulfill, contrary to the case of integer dimensions. The cal-
culated conductivity is not proportional to the Chern number,
but follows a similar pattern. Precisely, Hall conductivity is
not an integer in units of e?/h but exhibits disturbed plateaus
in the regions where the Chern numbers are quantized. We
speculate about possible reasons in the following.

At first, the formula, which calculates Chern number
through projectors, was proven to be properly defined only
for systems with translational invariance [45]. In the second,
even if the formula works for fractals, it may only fulfill in the
thermodynamic limit. Another reason behind the divergence
of fractional and integer dimensions could be the definition
of edge and bulk states. Some of the edge states are localized
along inner holes in fractals. These states become closer to
bulk states at maximal depth, therefore we cannot clearly
distinguish, whether it is the localization along the edges or
in the bulk due to inhomogeneities. Edge states along large
holes also become localized not only along edges but also
along small holes around an edge. These possible effects
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on the quantization of Hall conductivity and its’ relation to
topological invariants require future investigation.

We also considered different iterations /Iy of Sierpinski
carpet on a fixed square sample with size 3”7 x 3P, We ob-
served that there is a transition between two different regimes,
which occurs when Iy = Dy — 1. This transition can be seen
in density of states, Hall conductivity, and quasieigenstates.
In the case of quasieigenstates, the edge states mostly become
bulk states when Iy is increased. This result can be explained
by the effective dimension. If the number of holes is finite,
then the effective dimension of a sample is integer rather
than fractional. The transition occurs when holes in a sample
are dense enough and the effective dimension of the sample
becomes noninteger.

Fractals have noninteger dimension with a dense set of
holes and the proper definitions of edge and bulk states are
not obvious. In order to clarify their connection to the quanti-
zation of Hall conductivity, we calculated quasieigenstates for
different fractal depth. We observed that edge states can be
localized along the borders of all holes of various scales, not
only the edges of the sample. There is also no big difference
in amplitudes of currents for different holes. Edge states still
exist in a full fractal, but the behavior of their localization
becomes different. Additional holes along the edges increase

effective localization width. Therefore, one can assume that
if a state is localized around small holes and these holes are
dense enough, there could be a transition from edge state to a
bulk state. It could explain the result that despite the similarity
between Hall conductivity and Chern numbers, plateaus in
Hall conductivity are disturbed in fractals.

Note added. Recently, a preprint [46] appeared which
treated a similar problem but in a technically different way
(it was based on Landauer formula rather than Kubo-Bastin
formula and did not include an analysis of edge states). Quali-
tatively, parts of our conclusions are similar to the conclusions
obtained in that paper.
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