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Dodecagonal bilayer graphene quasicrystal and its
approximants
Guodong Yu 1,2,3, Zewen Wu 1,3, Zhen Zhan1, Mikhail I. Katsnelson2 and Shengjun Yuan 1,2*

Dodecagonal bilayer graphene quasicrystal has 12-fold rotational order but lacks translational symmetry which prevents the
application of band theory. In this paper, we study the electronic and optical properties of graphene quasicrystal with large-scale
tight-binding calculations involving more than ten million atoms. We propose a series of periodic approximants which reproduce
accurately the properties of quasicrystal within a finite unit cell. By utilizing the band-unfolding method on the smallest
approximant with only 2702 atoms, the effective band structure of graphene quasicrystal is derived. The features, such as the
emergence of new Dirac points (especially the mirrored ones), the band gap at M point and the Fermi velocity are all in agreement
with recent experiments. The properties of quasicrystal states are identified in the Landau level spectrum and optical excitations.
Importantly, our results show that the lattice mismatch is the dominant factor determining the accuracy of layered approximants.
The proposed approximants can be used directly for other layered materials in honeycomb lattice, and the design principles can be
applied for any quasi-periodic incommensurate structures.

npj Computational Materials           (2019) 5:122 ; https://doi.org/10.1038/s41524-019-0258-0

INTRODUCTION
The bilayer graphene with van der Waals interlayer interaction
shows rich electronic properties that are depending on the
stacking order and twist angle.1–15 Two graphene layers can be
arranged in AA, AB or twisted configurations. AA and AB stacking
are two well-known configurations with electronic properties
drastically different from the monolayer.16–19 The twist angle
between the layers offers an additional degree of freedom to tune
the electronic properties. If the commensuration condition is
satisfied,20 namely, the twist angle is θ ¼ cos�1ð3q2 � p2

3q2 þ p2Þ, where p
and q are integers, the twisted bilayer graphene (tBG) forms Moiré
pattern, which is periodic in the space and has an elementary unit
cell. The incommensurate tBG, on the other hand, has only quasi-
periodicity without any translational symmetry.
By now, the tBG with 30� twist angle, i.e. dodecagonal graphene

quasicrystal, which will be referred as graphene quasicrystal for
simplicity in the rest of the paper, has been grown successfully on
different substrates, including SiC(0001),21,22 Pt(111)23 and Cu-Ni
(111)24 surfaces. This emergent quasicrystal consisting of two
graphene sheets with perfect crystalline has attracted increasing
attention because of the coexistence of the quasicrystalline nature
and the relativistic properties.21–30 The 12-fold rotational symme-
try has been determined by the Raman spectroscopy, low-energy
electron microscopy/diffraction (LEEM/LEED), transmission elec-
tron microscopy (TEM) and scanning tunneling microscopy (STM)
measurements.21–25 Angle-resolved photoemission spectroscopy
(ARPES) measurements indicated that the interlayer interaction
between the two layers leads to the emergence of the mirror-
symmetric Dirac cones inside the Brillouin zone of each graphene
layer21–23 and a gap opening at the zone boundary.23 The critical
eigenstates27,29 and quantum oscillations28 were observed theo-
retically due to the quasi-periodicity. These experimental observa-
tions indicate that graphene quasicrystal is very different from
graphene, although several studies proposed that the tBG with

large twist angle (>15�) should behave like two decoupled
graphene monolayers.31–38

These electronic properties behind the quasi-periodicity of
graphene quasicrystal make it very urgent to propose a method to
study its electronic properties further in theory because the band
theory can not be applied directly. Recently, the k-space tight-
binding method29 and continuum model39 have been proposed
to understand its electronic structure. Both two methods have to
introduce the k-wavevector cutoff to implement the calculations
because k-wavector is no longer a good quantum number due to
the interlayer interaction. However, a number of band theory
based methods and programs can not be applied to post-process
the data obtained from these two methods. Besides, the
calculated quasi-band structure from k-space tight-binding
method is supercell-like, and can not be compared directly with
the ARPES measurements. In order to overcome these diffculties,
we propose a series of approximants with transitional symmetry
with the help of the large-scale tight-binding calculations in real
space. The effective band structure, which can be compared with
ARPES measurements directly, can be derived by unfolding the
band structures of these approximants. For a quasicrystal, its
approximant is a periodic structure that contains similar composi-
tions and almost the same local atomic structure within a unit cell.
For graphene quasicrystal, although the structure of an approx-
imant can be different from the original quasicrystal, a good
approximant should form the same rotational order within a unit
cell and keep similar physical properties as the infinite quasicrys-
tal. The approximant method has been widely used to understand
the physics of a quasicrystal (for a review see ref. 40 and references
therein). Importantly, theoretical studies on a periodic approx-
imant are much more easier comparing to a real quasicrystal, since
methods established for crystalline in condensed matter can be
readily used. The main purpose in this paper is to construct the
reliable and convincing approximants for graphene quasicrystal,
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and systematically study its electronic properties, including optical
conductivity, effective band structure and Landau level spectrum
in the presence of external magnetic fields.
To construct an accurate approximant, one needs first calculate

properly the characteristics of a real quasicrystal without any
further approximation. This is indeed a quite challenging problem
from a computational point of view, as a quasicrystal is not
periodic in the space and it contains, in principle, infinite number
of sites. In this paper, graphene quasicrystal is modeled by a round
disk of exactly 30� tBG. In order to reproduce the bulk properties
of an infinite graphene quasicrystal, such as density of states and
optical conductivities, a large enough round disk is needed to get
rid of the influence of the edge states. The crucial issue is
therefore how to efficiently calculate these properties of the
sample with a large radius. It is for sure beyond the commonly
used density-functional theory but may be accessible within the
tight-binding model. In fact, for twisted bilayer graphene and
transitional metal dichalcogenides, there are accurate tight-
binding models developed from first principle calculations.41–43

The hopping parameters in these models have both distance and
orientation dependence and can be used to describe properly
interlayer interactions in quasi-periodic bilayer. We will use the
one developed in ref. 43 which has been verified by comparing
results with several experiments.43–45 Recent theorical study
proposed that the electronic structure of tBG can be understood
as Dirac fermions coupled with opposite pseudo-magnetic fields
generated by the moiré pattern.46 The periodic intrinsic pseudo-
magnetic fields in tBG have been observed in experiment and can
be reproduced by this tight-binding model.45

For a large round disk of graphene quasicrystal described by the
tight-binding model, such as a system as large as ten million
atoms, the calculations of the electronic properties is still
challenging. A common approach one may consider is to
diagonalize the Hamiltonian. However, in the diagonalization
processes the costs of memory and CPU time scale as OðN2Þ and
OðN3Þ, respectively. In view of the potentially large number of
arithmetic calculations, it is advisable to use 1315 digit floating-
point arithmetic which corresponds to 8 bytes for a real number
and 16 bytes for a complex number. Thus, for a tight-binding
sample with N sites, we need in total 16 ´N2 bytes memory for
the storage of all the eigenstates. Considering a common
computational node with 256 GB memory, it has a maximum
storage for eigenstates of about 126,491 sites, which is indeed too
small to represent properly a quasicrystal. In fact, our numerical
tests show that even a quasicrystal sample with two million sites is
not large enough to neglect the influence of the edge states
(please see section SI in supplementary information). One may
use large supercomputers with more nodes and memory to
increase the number of sites that can be reached, but it is
computational too expensive as the method based on diagona-
lization does not scale linearly with the size of the sample. We will
apply a different approach, tight-binding propagation method
(TBPM),47 to overcome the difficulties raised by diagonalization.
TBPM is based on the numerical solution of time-dependent
Schrödinger equation without any diagonalization, and impor-
tantly, both memory and CPU costs scale linearly with the system
size. The calculations of electronic, optical, transport and
plasmonic properties can be easily implemented in TBPM without
the requirement of any symmetry. In this paper, our main purpose
is to build approximants and reproduce the electronic properties
that have been observed in the experiments. More studies of
other properties, which are not presented here, can be further
explored by TBPM or applying band theory on these small
approximants proposed.

RESULTS AND DISCUSSION
In this paper, graphene quasicrystal is simulated by the tight-
binding model based on pz orbitals, where the hopping energy
between site i and j48

tij ¼ n2Vppσð rij
�� ��Þ þ ð1� n2ÞVppπð rij

�� ��Þ: (1)

Here, n is the direction cosine of relative position vector rij with
respect to ez . The Slater and Koster parameters Vppσ and Vppπ have
the following form:

Vppπð rij
�� ��Þ ¼ �γ0e

2:218ðb� rijj jÞFcð rij
�� ��Þ; (2)

Vppσð rij
�� ��Þ ¼ γ1e

2:218ðh� rijj jÞFcð rij
�� ��Þ: (3)

The interlayer distance h and nearest carbon-carbon distance b
are chosen to be 3.349 and 1.418Å respectively. γ0 and γ1 are
turned to 3.12 and 0.48 eV to fit the experimental Fermi velocity
(8.9� 10.0 ´ 105 m/s), respectively.21,23 Fc is a smooth function

FcðrÞ ¼ ð1þ eðr�0:265Þ=5Þ�1
: (4)

Under a magnetic field, the hopping tij will be replaced by a
Peierls substitution.47

Approximant construction
The structure of graphene quasicrystal is shown in Fig. 1a. Along x
direction, bottom layer (black) and top layer (red) have the period
3b and a (¼ ffiffiffi

3
p

b), respectively. If a common period exists in such a
structure, there should be two integers M and N that satisfy
M ´ 3b ¼ N ´ a, i.e., N=M ¼ ffiffiffi

3
p

. Graphene quasicrystal posses the
quasi-periodicity because

ffiffiffi
3

p
is an irrational number, namely

N=M ¼ ffiffiffi
3

p
is never satisfied. The commensurate configurations of

tBG with twist angle close to 30� can be used as the approximant,
but the 12-fold rotational order will be destroyed. In this paper, we
construct the approximant in the following way: the twist angle of
30� is fixed and the top graphene layer is compressed or stretched
to satisfy the condition M ´ 3b ¼ N ´ at , where at is the lattice
constant of the top graphene layer with strain. This method was
applied to construct the periodic structure to calculate the
formation energy of graphene quasicrystal by using first principle
calculations.23

The procedure to construct the approximant of graphene
quasicrystal is given below: For a specific integer M (in this paper,
all integers less than 100 are considered), N can be determined by

N ¼ INT
M ´ 3b

a

� �
(5)

where, INTðxÞ stands for the integer closest to x. Then, at can be
obtained by

at ¼ M ´ 3b
N

: (6)

We name such an approximant as M=N, which has the lattice
vectors a1 ¼ ðM ´ 3b; 0Þ and a2 ¼ ð12M ´ 3b;

ffiffi
3

p
2 M ´ 3bÞ. The struc-

ture of 4=7 approximant is shown in Fig. 1b. Note that if M and N
share a common divisor, or N can be divisible by 3, a smaller
elementary unit cell exists. Then, the approximants with such M
and N will not be considered. The curve of the lattice constant at
with respective to the approximant size is given in Fig. 1c. It
indicates that at converges to a with the increase of the
approximant size. Usually, the approximant with larger size is
expected to reproduce more accurately the electronic properties
of the quasicrystal. However, this is not always the case as we will
show in the following, and it is important to figure out what are
dominant factors that determine the accuracy of these approx-
imants shown in Fig. 1c.
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Density of states
The density of states (DOS) of graphene quasicrystal is shown in
Fig. 2a. It is calculated from a round disk with radius about 204 nm
and more than ten million atoms by using the TBPM.47 The
previous calculation by using the k-space tight-binding method29

showed spiky peaks and dips in DOS, and all these Van Hove
singularities they observed can be reproduced in our calculations.
As the tight-binding parameter γ0 we adopt (3.12 eV) is different
from the value 2.7 eV used in ref., 29 the positions of these peaks in
DOS are not exactly the same. Previous study23 and our
calculations indicate that the experimental Fermi velocity
9:1 � 10 ´ 105 m/s can be reproduced correctly when γ0 =
3.1� 3.12 eV. As shown in Fig. 2a, comparing the DOS of
graphene quasicrystal with graphene, the significant difference is
the emergence of some peaks in the spectrum, which is attributed
to the interaction between layers.29 In the vicinity of Fermi level,
the DOS of graphene quasicrystal is almost the same as pristine
graphene, which indicates that their electronic and optical
properties may behave similar at low energies.
In order to figure out the influence of lattice constant (at) and

approximant size (M) on the accuracy of the approximants, we
compare the DOS of graphene quasicrystal with these obtained
from approximants in Fig. 2a, b. The results indicate that as long as
at is close enough to a, even a small approximant, such as 15/26
which contains only 2702 carbon atoms, can reproduce the DOS of
graphene quasicrystal with very high accuracy that one can not
distinguish them by eye (see the results plotted in Fig. 2a). However,

if at is far from a, even the sample contains much more atoms, and
it can not be supposed to be a qualified approximant. For example,
as the data shown in Fig. 2b, 80/139 contains 77042 carbon atoms in
the unit cell, but the calculated DOS differs from the one obtained
from quasicrystal, especially around Van Hove singularities.
The quantitative measurement on the accuracy of an approx-

imant can be described by the standard deviation

Δρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i

ρQCðϵiÞ � ρðϵiÞj j2
s

(7)

where N is the number of energy points, ρQCðϵiÞ and ρðϵiÞ are the
DOS of graphene quasicrystal and the approximant at energy ϵi ,
respectively. We plot Δρ of several approximants as a function of
the relative lattice mismatch δ (¼ a� atj j=a) in Fig. 2c, which show
clearly that Δρ increases monotonically with increasing lattice
mismatch. It is obvious that the smaller lattice mismatch is, the
more accurate DOS the approximant can reproduce. More
precisely, the data can be fitted with a simple function
Δρ ¼ 0:157 ´ δ0:562. Our numerical tests indicate that the lattice
mismatch is a crucial factor to justify the accuracy of the
approximant. In the following, we will only focus on these
accurate approximants shown in Fig. 2a, such as 15/26, 41/71, 67/
116 and so on. Actually, when a strain is applied to the top layer,
both two factors, namely the change of the electronic structure of
the top layer and the change of the interlayer interaction between
the two layers, contribute to the deviation of DOS from the

Fig. 1 The atomic structures. a Graphene quasicrystal. b 4/7 approximant with four elementary unit cells. c Lattice constant at of the top layer
of the approximants with M< 100. The horizontal dashed line shows the lattice constant a ¼ 2:456Å of pristine graphene.
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graphene quasicrystal. Our results (see section SII in Supplemen-
tary information) show that at small lattice mismatch the change
of the electronic structure of the top layer is the dominating
factor. But the change of the interlayer interaction becomes more
important as the lattice mismatch increases and both two factors
are comparable at large lattice mismatch.
We also consider the influence of the structure relaxation on

DOS (see section SIII in Supplementary information). For one
limiting case that the atoms in the bottom layer are fixed, which
corresponds to the strongest control from the substrate, the top
layer almost keep flat, and the DOS is almost the same as the non-
relaxed structure. For the other limiting case, namely a free-

standing sample, which corresponds to the weakest control from
the substrate, the sample undergoes a strong lattice deformation
around the edge and there are also some small ripples around the
center. With such lattice deformation the change of the DOS of
the graphene quasicrystal becomes more obvious, but all the Van
Hove singularities appeared in non-relaxed structure still exist and
their energies don’t change. As the deformation of the lattice
structure may lead to the emergence of both scale and vector
potentials, and subsequently peudo-magnetic fields in some parts
of the sample,45,46,49,50 it is worth to study the relaxation of
graphene quasicrystal in specified conditions (such as substrate
and boundary), and discuss them in details as a separated paper.

Optical conductivity
Density of states is the counting of states at certain energy, and it
does not contain the details of the wave function, such as the
amplitude and phase distribution in the space. To make the
verification of our approximants more complete, the comparison
of optical conductivities among graphene quasicrystal, its
approximants and graphene is shown in Fig. 3. The calculation
of optical conductivity (see the “Methods” section for details) is
based on tight-binding propagation method47 without diagona-
lization of the Hamiltonian matrix. Although the method itself
does not using directly eigenstates of the Hamiltonian, it is
equivalent to the standard Kubo formulation which calculates
excitations between occupied and unoccupied eigenstates.
Optical conductivity is indeed a bulk property determined by
wave functions, and can be used to check the accuracy of our
approximants. Indeed, as we see from the results plotted in Fig. 3,
there is a perfect agreement between graphene quasicrystal and
its approximants with small mismatch as these shown in Fig. 2a.
Importantly, by comparing with the results of pristine graphene,
there are emerged peaks around 4.0� 4.6 eV in the optical
spectrum of graphene quasicrystal, which are reproduced exactly
with the same energies and amplitudes by proposed approx-
imants. These peaks in the optical spectrum are attributed to Van
Hove singularities appeared in density of states shown in Fig. 2a. It
is possible to identify the one-to-one correspondence of the peaks
in optical spectrum and density of states by using the band
structure of proposed approximant. We leave these detailed
studies in future, together with other optical and plasmonic
properties of graphene quasicrystals. The peak at 5.63 eV
corresponds to the transition between the singularities of
graphene monolayer, which shifts towards higher frequency by
about 0.13 eV than graphene.

Eigenstates with 12-fold rotational symmetry
In spite of the periodicity of approximants, the quasi-periodicity
still remains inside each unit cell. The electronic properties related
to the quasi-periodicity can be verified by the extistance of the 12-
fold rotational symmetric eigenstates within the unit cell. In this
paper, 12-fold rotational symmetry means a rotation of 60�nþ 30�
followed by the mirror reflection with the mirror plane in the
middle of the two graphene layers plus just rotation of 60�n (n is
any integer), because after these operations the structure remains
unchanged. Two 12-fold rotational symmetric eigenstates of 15/26
approximant are shown in Fig. 4a, b, and the corresponding states
in 41/71 approximant are shown in Fig. 4c, d, respectively.
Comparing with 15/26 approximant, some new 12-fold rotational
symmetric eigenstates appear for the 41/71 approximant, two of
which are given in Fig. 4e, f. Such a result is reasonable. For a real
graphene quasicrystal, some critical eigenstates expand more
than 20 nm in space,29 which can not be simulated by a small
approximant, for instance, the approximant with 29.84� twist
angle in ref. 29 and the 15/26 approximant in our model. But as the
approximant size increased to be large enough, these critical
states appear again. It is worth noting that the top layer still has

Fig. 2 The comparison of DOS obtained from graphene quasi-
crystal (QC) and its approximants. For graphene quasicrystal, a
round disk with more than ten million atoms is used. For
approximants, the numbers of carbon atoms in a unit cell are given
in brackets. a Accurate approximants with less than 60,000 carbon
atoms in a unit cell, and the smallest one (15/26) contains only 2702
atoms. DOS of pristine graphene is also given for reference.
b Examples of several inaccurate approximants. c The standard
deviations of DOS of some approximants at different lattice
mismatches, which are fitted by the function Δρ ¼ 0:157 ´ δ0:562.
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the tiny strain in 15/26 and 41/71 approximants, so the
eigenstates we discussed here have approximately but not exactly
the 12-fold rotational symmetry.

Effective band structure
According to the generalized Umklapp scattering theory,51,52 the
interlayer interaction will couple the wavevector k in the bottom

layer and the wavevector ek in the top layer if k þ G ¼ ek þ eG is
satisfied, where G and eG are the reciprocal lattice vectors of

bottom and top layers respectively. The coupling matrix elementek; eXjUjk; XD E��� ��� can also be understood as the scattering from the

k state of bottom layer to ek state of top layer, where k; Xj i ( ek; eX��� i)
is the Bloch basis function in sublattice X (eX) for bottom (top)
layer, U is the interlayer interaction. The scattering strength just

depends on the length of qj j ¼ k þ Gj j ¼ ek þ eG��� ���, because the

hopping energy between two layers is isotropic along the in-plane
direction. The smaller jqj corresponds to the stronger scattering
process. The Brillouin zones (BZs) of two graphene layers are

shown in Fig. 5a. If we take K , K
0
, eK , and eK 0

as the original points for
scattering, where the Dirac cones exist for two layers, they will be
scattered to their mirrored points eK1 and K1 after the strongest
scatterings and eK2 and K2 after the second strongest scatterings,
respectively. As an example, the first two strongest scattering
paths from K

0
are shown in Fig. 5b, c, respectively.

Previous ARPES measurements21,23 and theoretical studies21 show
that the band structures around these six kpoints (K , eK , K1, eK1, K2,
and eK2) are Dirac cones. The Fermi velocities for eK , K , K1, and eK1
Dirac cones are 9.3, 9.2, 8.9, and 9.1 ´ 105 m/s, respectively.21 Due to
the hybridization between the Dirac cones at K and eK1, a �200 meV
gap can be observed at M point below the Fermi level for the
graphene quasicrystal on Pt(111) substrate.23

Now, we check whether the approximants we proposed can
reproduce the experimental results. Because the approximant
contains lots of unit cells of the two layers, the band structure
calculated directly from the approximant can not be used to
compare with the ARPES measurements. The effective band
structure (EBS) derived by applying the band-unfolding method
can overcome this problem. Here we focus on only the smallest
approximant (15/27). The EBS along the path plotted by blue dashed
line in Fig. 5a is given in Fig. 5d, which contains about four bands in
the whole energy region. That is because only two pz orbitals exist in
the unit cell of each monolayer. The strength of the spectral function
becomes weaker at the Fermi level from K (eK ) to eK2(K2) via eK1 (K1). It
just follows the order of scattering strength, namely, the weaker
scattering will lead to weaker strength of the spectral function of the
Dirac cones at the ending points. Such results are in accordance with
the generalized Umklapp scattering theroy21 and the ARPES
measurements.23 In order to show the results clear, the spectral
functions around K1(eK1) and K2 (eK2) are always timed by 300 and 5
´ 106, respectively in Fig. 5. The Fermi surfaces and the detailed EBS
around the six kpoints are shown in Fig. 5e, f, respectively, which
show the band structures are all Dirac cones clearly. Although our

Fig. 3 The comparison of optical conductivities of graphene quasicrystal (QC), its approximants and monolayer graphene. The inset
shows a zoom of the peaks associated with the quasi-periodic states appeared in graphene quasicrystal, which is all accurately reproduced by
proposed approximants.

Fig. 4 Eigenstates with 12-fold rotational symmetry. a, b The
eigenstates of 15/26 approximant at −4.2 and −2.76 eV, respec-
tively. c–f The eigenstates of 41/71 approximant at −4.2, −2.76,
−2.4, and −2.23 eV, respectively. Red and blue circles represent the
projection on the top and bottom layers, respectively.
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Fig. 5 The effective band structure of graphene quasicrystal. a Brillouin zones of the two layers. b, c The first two strongest scattering paths
for K

0
(K

0 ! eK1 and K
0 ! eK2). d The effective band structure of graphene quasicrystal obtained by unfolding the band structure of 15/26

approximant. The insets at the bottom left and right corners show the gaps at M and eM clearly. e Fermi surfaces around K , K1, K2, eK , eK1, and eK2

above Fermi energy by 35meV. f Effective band structures around K , K1, K2, eK , eK1, and eK2 along four directions. The larger spectral function is
denoted by larger black dot in (d, f) and lighter color in (e), respectively. The spectral functions around K1/eK1 and K2/eK2 are multiplied by 300
and 5 ´ 106, respectively.
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results indicate that the four Dirac cones at eK , K , eK1 and K1 have the
same Fermi velocity of 9:08 ´ 105 m/s, the value is still very close to
that observed in experiment. Moreover, the spectral function shows
strong anisotropic intensity, which leads to the strong contrast of
two bands along y direction for eK1 and eK2 and along x direction for
K1 and K2, and almost half circles of the Fermi surfaces at K1, eK1, K2
and eK2. As shown in the insets in Fig. 5d, the band gap at M point
below Fermi level, which has been observed in experiment,23 can
also be obtained by our model, although the gap value (�130meV)
is a little smaller than that in experiment (�200meV).
It is worth noting that our calculations show almost equivalent

results for the two graphene layers because of their almost the
same lattice constants. However, for the graphene quasicrystal
grown on Pt(111) surface, mirrored Dirac points of only top layer
can be detected.23 But for the one grown on 4H-SiC(0001) surface,
the mirrored Dirac points of both layers can be detected, although
the ARPES signals are obviously different.21 The signal is even
stronger for some mirrored Dirac cones than for the original
ones.21 Besides, graphene quasicrystal on 4H-SiC(0001) should be
n-type doped according to the ARPES measurements.21 Therefore,
both Pt(111) and 4H-SiC(0001) substrates should impact the
electronic properties of graphene quasicrystal. The existence of
substrates may be the reason why our results are not exactly the
same as the experimental results. However, our theoretical results
from approximant 15/27 are in accordance with generalized
Umklapp scattering theory21 and main experimental results.21

Landau levels
For graphene under a strong magnetic field perpendicular to the
graphene plane, there is a quantization of the energy states, the
so-called Landau levels.53–56 The two-dimensional Dirac fermion
behavior of graphene can be expressed by the Landau levels which
satisfies En ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e_B Nj jp

. In order to study the electronic
properties of graphene quasicrystal under magnetic field, we
calculate the Hofstadter’s butterfly using 41/71 approximant under
the magnetic field less than 50 T (see Fig. 6a). Similar to graphene,
the DOS of the graphene quasicrystal under magnetic field also
shows the Landau levels. In the vicinity of the Fermi energy, they
follow the two-dimensional Dirac fermion behavior but with the
Fermi velocity vF of 9.20 and 8.84´ 105 m/s for hole and electron,
respectively, which are obtained by fitting Landau levels under 50
T magnetic field (see Fig. 6b). It agrees well
with the values from the EBS (9.1´ 105 m/s) and experiments
(8.9� 9.3´ 105 m/s).21 Moreover, it is almost the same as but
slightly smaller than that in graphene (9.25 and 9.05 ´ 105 m/s for
hole and electron, respectively, which are calculated by using the
same tight-binding parameters as one layer in graphene quasi-
crystal). It means the electronic properties of graphene quasicrystal
should be similar to graphene at low energies. More interestingly,
some new Landau levels appear below Fermi level by about 1.6 eV
when magnetic field is more than 10 T. By fitting the new Landau
levels, it can be found that they also follow the two-dimensional
Dirac fermion behavior but with a reduced Fermi velocity 5.21
´ 105 m/s. Besides, the Landau level of n= 0 doesn’t exist, but its
position is predicted to be around 1.49 eV below Fermi level by
interpolation. It is also around the position where the band gap at
M appears, and the K (eK) and eK1(K1) valleys hybridize strongest.
In summary, we performed a systematic study of the electronic

properties of graphene quasicrystal in the framework of tight-
binding approximation. Large-scale calculations of round disks of
graphene quasicyrstal with more than ten million atoms have
been implemented to model the real graphene quasicrystal.
Furthermore, we proposed a series of approximants with
translational symmetry to represent graphene quasicrystal, and
the accuracies of these approximants have been verified by
comparing their density of states and optical conductivities to the
large round disk of graphene quasicrystal. The number of atoms in

these approximants are only few thousands or tens of thousands.
The lattice mismatch between two layers in the approximant is
found to be the dominant factor, which determines the accuracy
of this approximation. An approximant with smaller mismatch can
approximate graphene quasicrystal better than the one with
larger mismatch, independent on the size of the approximant. This
is indeed a quite surprising result as one would expect that larger
approximant would leads to better accuracy. In fact, decreasing
lattice mismatch between layers should be a designing principle
when building approximants for any incommensurate layered
structure.
Furthermore, by applying band-unfolding procedure to the

smallest approximant with 2702 atoms, the effective band
structure of graphene quasicrystal can be derived and compared

Fig. 6 The Landau levels. a Hofstadter’s butterflies of 41/71
approximant with magnetic field less than 50 T. Upper and
lower panels correspond to the energy regions of −1.0� 1.0 eV
and −2.0�−1.5 eV, respectively. Color bar stands for the value of
DOS. The blue numbers in the lower panel indicate the indexes of
the corresponding Landau levels. b The DOS of 41/71 approximant
(left) and Landau levels fitting (right) under a 50 T magnetic field.
The inset is the zoom in of the new emerging Landau levels in the
energy range about −2.0�−1.6 eV. For the Landau levels fitting,
the top and middle panels correspond to the Landau levels of the
holes and electrons, respectively, in the vicinity of the Fermi energy,
and the bottom panel corresponds to the Landau levels in the inset.
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directly with recent ARPES measurements. Such a comparison
indicates that its properties agree well with the main experimental
results, such as: (1) the emergence of new Dirac points, especially
the mirrored ones, (2) the appearance of a band gap �130 meV
(�200meV in experiment) at the M points below the Fermi
energy, and (3) the Fermi velocity of �9:1 ´ 105 m/s. Besides, our
results show a strong anisotropic intensity in spectral function
around these new Dirac points. By calculating the density of states
in the presence of strong perpendicular magnetic fields (B > 10 T),
we found that besides the usual Landau level spectrum in the
vicinity of Fermi energy, which is almost the same as monolayer
graphene, a group of new Landau levels appear with energies
about 1.6 eV below the Fermi energy. They also follow the
property of two-dimensional Dirac fermion En ¼ vf

ffiffiffiffiffiffiffiffiffiffiffiffi
2e_nB

p
but

with a reduced Fermi velocity of �5:1 ´ 105 m/s. Interestingly, the
zero order Landau level does not appear in the spectrum, no
matter how strong the magnetic field is. The optical conductivities
of graphene quasicrystal and its approximants have been studied
numerically by using the tight-binding propagation method
within the linear response theory. The optical excitations
associated with quasicrystal states have been observed between
4.0� 4.6 eV, which should be measurable in optical experiments.
Importantly, our proposal of the approximants for graphene

quasicrystal can be applied directly for any bilayer or multilayer
quasicrystals formed by two-dimensional honeycomb lattices. It
works not only for graphene, but also for other materials such as
hexagonal transition metal dichalcogenides, e.g., MoS2, WS2,
MoSe2 and WSe2, etc. In fact, to model accurately these materials,
there are much more orbitals and hoppings that need to be
considered in the tight-binding model,41,42 therefore, an approx-
imant with finite unit cell will dramatically simplify the complex-
ities of the modeling. The numerical costs such as memory and
CPU time in the numerical calculations will be reduced
significantly. The studies of layered quasicrystals with other
rotational order and/or other materials by using the principles
proposed in this paper will be continued in future works.

METHODS
Effective band structure
First of all, the spectral function at wavevector k and energy ϵ can be
calculated by57

Aðk; ϵÞ ¼
X
IkSC

PIkSC ðkÞδðϵ� ϵIkSC Þ; (8)

where ϵIkSC is the energy for Ith band at wavevector kSC for the
approximant. Actually, only one kSC , namely kSC ¼ k þ G being G the
reciprocal lattice vector of the approximant, contributes to the spectral
function. The spectral weight is defined by

PIkSC ðkÞ ¼
X2
s¼1

X
i

ψPCs
ik jΨSC

IkSC

D E��� ���2 ¼ X2
s¼1

PsIkSC ðkÞ; (9)

where ψPCs
ik

�� i and ΨSC
IkSC

�� i are the eigenstates of layer s and the approximant,
respectively. Under the tight-binding method, the spectral weight
contributed from layer s can be described by

PsIkSC ðkÞ ¼
1
ns

X
α

X
ls l

0
s

eik�ðls�l
0
sÞUlsα�

IkSC
Ul

0
sα
IkSC

: (10)

Here, ns is the number of primitive unit cell of layer s in one elementary
unit cell of the approximant. Ulsα

IkSC
is the projection of ΨSC

IkSC

�� i (the eigenstate
of the approximant) on kSC lsαj i (the Bloch basis function of approximant),
which can be constructed by all atomic orbitals

kSC lsαj i ¼ 1
N

X
L

eikSC �Lϕðr � L� ls � tαÞ; (11)

where N is the number of the SC. ϕðr � L� ls � tαÞ is the pz orbital located
at Lþ ls þ tα . Equation 10 indicates that only the eigenstates of
approximant are necessary to obtain the spectral function.

Then, the effective band structure can be obtained by58

δNðk; ϵÞ ¼
Z ϵþδϵ=2

ϵ�δϵ=2
Aðk; ϵ0Þdϵ0; (12)

where δϵ is the bin width in energy sampling.

Tight-binding propagation method
The density of states (DOS) are calculated by TBPM47 based on the
numerical solution of the time-dependent Schrödinger equation. In order
to calculate the DOS under a magnetic field and then Hofstader’s butterfly,
the hopping is replaced by the Peierls substitution. In TBPM, a random
superposition of the pz orbitals at all sites is used as the initial state ϕ0j i
with ϕ0jϕ0h i ¼ 1. DOS is calculated as Fourier transform of the time-
dependent correlation function

dðϵÞ ¼ 1
2π

Z 1

�1
eiϵτ ϕ0je�iHτ=_jϕ0

D E
dτ: (13)

During all calculations in TBPM, we always use systems with more than ten
million atoms, for graphene quasicrystal, it is a disk with radius about
204 nm. The open and periodic boundary conditions are used for
graphene quasicrystal and the approximants, respectively.
The optical conductivity is calculated by using the Kubo formula in

TBPM.47 The real part of the optical conductivity matrix σα;β at temperature
T reads

Reσα;βðωÞ ¼ lim
ϵ!0þ

e�_ω=kBT � 1
_ωA

Z 1

0
e�ϵτsinωτ

´ 2Im ϕ2ðτÞjjαjϕ1ðτÞh iβdτ:
(14)

Here, A is the area of the unit cell per layer, and wave functions

ϕ1ðτÞj iβ ¼ e�iHτ=_½1� f ðHÞ�jβ ϕ0j i;
ϕ2ðτÞj i ¼ e�iHτ=_f ðHÞ ϕ0j i;

(15)

where f ðHÞ ¼ 1=ðeβðH�μÞ þ 1Þ is the Fermi-Dirac distribution operator.
For both density of states and optical conductivities, exponential

decayed time windows are multiplied to the time-dependent correlations
before performing the Fourier transform, in order to improve the
approximation of the integrals. All the results are averaged with a number
of different realizations of random sequences in the initial states to reduce
the fluctuations appeared in the spectrum due to limit size of the sample.
More detailed description of TBPM is collected in section SIV of

Supplementary information.

Structure relaxation
The atomistic model based on the classical REBO59 (intra-layer interaction)
and Kolmogorov–Crespi60 (inter-layer interaction) potentials is implemen-
ted in LAMMPS software.61 For Kolmogerov-Crespi potential, the
kolmogorov/crespi/z version is used in LAMMPS. This method has been
used to study the effect of the atomic relaxation on the structure of moiré
patterns in twisted graphene on graphite and bilayer graphene62 and it
can also accurately reproduce the potential energy surface of the graphite
substrate.63
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