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Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons
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We report on a theoretical study of electronic and magnetic properties of hydrogen-saturated InSe nanorib-
bons (H-ZISNs). Based on hybrid-functional first-principles calculations, we find that H-ZISNs exhibit tunable
half-metallicity and short-range ferromagnetic order. We first show that p-type doping turns narrow H-ZISNs
from semimetal to half-metal with spin polarization along the In-terminated edge. This behavior is further
analyzed in terms of a two-band tight-binding model, which provides a tractable description of the H-ZISN
electronic structure, and serves as a starting point for the determination of magnetic interactions. The dominant
exchange interaction determined within the Heisenberg model is found to be ferromagnetic independently
of the ribbon width and charge doping. Short-range stability of magnetic order is assessed in terms of the
zero-field spin correlation length, which is found to be about 1 nm at liquid nitrogen temperatures. Finally,
by calculating spin-dependent transport properties, we find a doping regime in which strongly spin-selective
electrical conductivities can be observed. Our findings suggest that H-ZISNs are appealing candidates for the
realization of spintronic effects at the nanoscale.
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I. INTRODUCTION

The possibility of magnetic ordering in two-dimensional
(2D) materials is among the most topical problems in physics
since the discovery of graphene. Edge termination, one of the
most promising ways to induce magnetism in 2D systems,
has long been a subject of interest [1–8]. For instance, zigzag
graphene nanoribbons (ZGNRs) with narrow widths are pre-
dicted to be antiferromagnetic semiconductors [1,5], while for
larger widths (>7 nm), a semiconductor-to-metal transition
is observed experimentally [4]. A number of methods can
be applied to control magnetism of ZGNRs, among which
are doping and edge modification [2,3,8]. Edge magnetism
has also been proposed in other 2D materials such as MoS2

[9], black phosphorus (BP) [10], and ZnO [11]. One of the
most interesting aspects of edge magnetism is half-metallicity.
In half-metals, spin polarization results in the coexistence
of metallic nature for electrons with one spin orientation
and insulating nature for electrons with the other. It has
been proposed that half-metallicity in ZNGRs can be real-
ized under external transverse electric field [6]. However, for
graphene, ZNGRs are less stable compared to some other
nonmagnetic structures, such as mono- and dihydrogenated
armchair nanoribbons [12,13], as indicated by spontaneous
reconstructions of zigzag edges at room temperature [14].
For BP, the environmental instability limits its application
in nanoscale electronic and magnetic devices [15]. To find
magnetic materials with structural and environmental stability
remains an important topic in 2D spintronics.

Monolayer InSe, a new member in the family of 2D mate-
rials, has been fabricated very recently [16]. It is an indirect
gap semiconductor with an optical gap of around 2.9 eV
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[16]. The carrier mobility of multilayer InSe exceeds 103 and
104 cm2 V−1 s−1 at room and liquid-helium temperatures, re-
spectively [16]. Interestingly, the effective masses in InSe are
weakly dependent on the layer thickness and are significantly
smaller than those in other van der Waals crystals [17]. InSe
exhibits a higher environmental stability than few-layer BP,
and a higher room-temperature mobility than few-layer transi-
tional metal dichalcogenides [16]. In addition, few-layer InSe
has an extremely strong photoresponse and fast response time
[16–18], which make it a promising candidate for optoelec-
tronic applications. Besides, half-metallicity in 2D halogen
atom adsorbed InSe-X (X = F, Cl, Br, and I) nanosheet has
been predicted from first-principles calculations [19].

Very recently, density functional theory (DFT) studies
point to the possibility of edge magnetic ordering in InSe
nanoribbon [20]. Similar to graphene, edge spin polarization
is predicted for all zigzag nanoribbons with/without hydrogen
or halogen saturation. H-saturated zigzag InSe nanoribbons
(H-ZISNs) are semimetals with electrons and holes existing
at Se- and In-terminated edges, respectively. Interestingly,
the spin-polarization in H-ZISNs is only localized along the
In-terminated edge. Within DFT, the magnetic ground state
of H-ZISNs is found to be ferromagnetic (FM) due to its
lower total energy compared to the nonmagnetic configura-
tion. Single-edge magnetic polarization appears appealing in
the context of obtaining single-edge spin current by means
of the cutting edge technologies. Interestingly, magnetism in
InSe nanoribbons is predicted to be robust with respect to the
passivation by hydrogen, which is important from the point of
view of practical applications. Neither origin nor stability of
edge magnetism in InSe has yet been analyzed in detail. The
practical potential of this phenomenon also remains unclear.

In this paper, we discuss magnetic and electronic properties
of H-terminated zigzag InSe nanoribbons (H-ZISNs). We
focus on tunable half-metallicity and intrinsic magnetism at
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the nanometer scale, and their potential applications. We start
from first-principles electronic structure calculations at the
hybrid-functional level, and construct a tight-binding (TB)
Hamiltonian. In order to analyze magnetic properties in more
detail, we estimate the exchange interaction parameters in H-
ZISNs defined in terms of the isotropic Heisenberg model. We
then determine the magnetic ground state and spin correlation
length as a function of the nanoribbon width and temperature.
Finally, we calculate spin-dependent electron conductivities
as a function of doping, and discuss the potential application
of H-ZISNs in spintronic devices.

The paper is organized as follows. In Sec. II, we present
first-principles electronic structures of N -H-ZISNs (N =
5−12) calculated using DFT-HSE06 and discuss their half-
metallicity. A simplified description of the electronic struc-
ture within a two-band TB model is given in Sec. III. In
Sec. IV, we estimate exchange interactions, and parametrize
the Heisenberg model to determine the ground magnetic state
of N -H-ZISNs. Having obtained the Heisenberg model, in
Sec. V, we calculate the spin correlation length dependence on
the nanoribbon width and temperature, as well as discuss fun-
damental limits of H-ZISNs magnetic applications. In Sec. VI,
we discuss the spin-dependent conductivity as a function of
chemical potential (doping) in H-ZISNs. In Sec. VII, we
summarize our findings and conclude the paper.

II. FIRST-PRINCIPLES CALCULATIONS

Monolayer InSe has a hexagonal structure with D3h point
group, which includes a threefold rotation symmetry axis
(C3v), and a mirror plane (σh). Two types of nanoribbons can
be constructed from InSe, namely, nanoribbons with zigzag
(ZISN) and armchair (AISN) edges. To avoid the presence of
highly reactive dangling bonds, we saturate edge atoms by
hydrogen (see Fig. 1). We label the corresponding nanorib-
bons as H-ZISNs and H-AISNs, respectively. In contrast to
H-AISNs, where vertical mirror plane (σv) is present, opposite
edges of H-ZISNs are terminated by different (In and Se)
atoms, which results in the structure with lower symmetry.

Compared to H-ZISNs, all armchair InSe nanoribbons are
predicted to be nonmagnetic semiconductors with a direct
band gap of ∼1 eV at the � point [20]. Here, we mainly
focus on magnetic properties and, therefore, consider only
H-ZISNs. Electronic and magnetic properties are studied in
our paper by performing DFT calculations using the Vienna
Ab initio Simulation Package (VASP), which implements the
projected augmented wave method [21–24]. 4d105s25d1 elec-
trons of In and 4s24p4 of Se were treated as valence electrons.
The energy cutoff of 500 eV was set for a plane-wave basis

FIG. 1. Schematic crystal structures of (a) 7-H-AISN and (b) 5-
H-ZISN.

set. The reciprocal space was sampled by 21 k points for all
InSe nanoribbons. The vacuum space of at least 10 Å was
introduced in the directions perpendicular to the ribbons to
avoid spurious interactions between periodic supercell im-
ages. All structures were relaxed until the residual force on
each atom were less than 0.01 eV/Å. Magnetic moment of
each atom was calculated by the Bader electron population
analysis method [25].

As a starting point, we use the generalized gradient ap-
proximation as proposed by Perdew, Burke, and Ernzerhof
(PBE) [24] to describe exchange-correlation effects. However,
it is well known that PBE functionals systematically underes-
timate band gaps in insulators and semiconductors [26,27].
To get a more accurate electronic structure, we adopt the
hybrid-functional method of Heyd, Scuseria, and Ernzerhof
(HSE06) [27,28]. In this method, 25% of the exact screened
Hartree-Fock exchange is incorporated into PBE exchange
[29]. H-ZISNs with widths N 4–20 and 5–14 were calculated
using the PBE and HSE06 functionals, respectively.

Width-dependent magnetization and edge energy have
been calculated at the PBE level to find the width N at which
electronic and magnetic properties converge with respect to
the ribbon size. We first check the stability of two types of
edges by calculating the edge energy density [30], defined as
Eedge = (Etot − ∑

i niμi )/2L, where Etot is the total energy
of the ribbon, ni and μi are the number and chemical potential
of the ith atom in the ribbon (including In, Se, and H atoms),
and L is the unit cell length in the periodic direction. Here,
H-ZISNs are treated as a reaction product of monolayer InSe
and hydrogen gas. The chemical potentials of In and Se atoms
are taken from monolayer InSe, while that of the H atom is
the total energy per atom of H2 molecule. Because In- and Se-
terminated zigzag edges always coexist, the calculated edge
energy density in H-ZISNs is arithmetically averaged over two
different zigzag edges. By varying the ribbon width (N ), we
find that the edge energies of N -H-ZISNs decrease monotoni-
cally as N increases, and converge to 23.2 meV/Å in the limit
of large N (see Fig. 2). A rather small edge energy, which
is comparable to graphene and MoS2, indicates that InSe
nanoribbons can be fabricated in the laboratory [9,31,32]. The

FIG. 2. Edge energy and total magnetic moment of H-ZISNs
calculated for different widths N . Both quantities converge as N

increases. The total magnetic moment and edge energy are expected
to be 0.54 μB and 23.2 meV in the large-N limit.
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FIG. 3. DOS and band structure of 5-H-ZISN calculated using
(a) PBE and (b) HSE06 methods. (c) Real-space distribution of spin
density ρs (r) averaged over valence states of 5-H-ZISN, and charge
density of the four relevant spin-up states at the � point, ρ↑

n (r). DOS,
g(E) = ∑

n,k δ(E − En,k ) is calculated on a grid of interpolated 104

k points, adopting simple Gaussian smearing with the variance σ =
1 meV.

width-dependent magnetic moment of H-ZISNs is shown in
Fig. 2. One can see that magnetization is essentially converged
at N > 10.

To analyze electronic properties of H-ZISNs, we first con-
sider the smallest magnetic nanoribbon, which is 5-H-ZISN.
As shown in Figs. 3(a) and 3(b), 5-H-ZISN is a semimetal
with finite density of states (DOS) at the Fermi energy. While
the conduction band remains doubly degenerate, the valence
band split into two bands, corresponding to different spin
projections (labeled in Fig. 3 as spin up and spin down).
As a result of the spin splitting, there is a direct energy gap
emerging at the � point for the spin-up channel, whereas
the spin-down channel remains gapless in the vicinity of the
Fermi energy. The value of this energy gap is about 20 meV

calculated within PBE, while it increases to 200 meV at the
HSE06 level, which is due to the larger spin splitting. The fact
that the hybrid functional results in the larger spin splitting in-
dicates an important role of the exact Hartree-Fock exchange
in the formation of magnetic properties of H-ZISNs, which is
common in sp magnetism [33]. The Fermi energy in pristine
5-ZISN calculated within HSE06 is found to be about 70 meV
above the band gap, which allows us to expect the possibility
to turn 5-ZISN from semimetal to half-metal by varying the
carrier concentration via either the electric field effect or
by p-type doping. Figure 3(c) shows real-space distribution
of the spin density ρs (r) = ∑

n,k (|φ↑
nk (r)|2 − |φ↓

nk (r)|2) aver-
aged over the valence bands, and the charge density of the
spin-up states at the � point ρ

↑
n (r) = |φ↑

n� (r)|2, corresponding
to two highest valence bands and two lowest conduction
bands. One can see that the conduction and valence states
are predominantly localized along the Se- and In-terminated
edges, respectively. Since only the valence band exhibits spin
splitting, spin density is expectedly localized along the In-
terminated edge.

In order to verify the generality of our findings, we perform
HSE06 calculations of H-ZISNs for different ribbon widths.
From our calculations it follows that a gap above 100 meV
is found between the conduction band minimum (CBM) and
spin-down valence band maximum (VBM) in narrow H-
ZISNs when N is ranging from 5 to 14. The trend can be seen
from Fig. 4, where the electronic bands of 6-H-ZISN, 7-H-
ZISN, and 8-H-ZISN are shown as examples. This indicates
that tunable half-metallicity is typical for narrow H-ZISNs.
The energy difference between the Fermi energy and spin-
up CBM is getting larger as N increases. This observation
implies that half-metallicity could be realized by a deeper
p-type doping in wider H-ZISNs. As shown in Fig. 4(d),
the energy difference between the Fermi energy and CBM is
essentially converged to around 250 meV for N > 10, which
corresponds to a ∼75% filling of the spin-down band. At the
same time, the energy difference between CBM and spin-up
VBM decreases almost linearly as the width increases. It is
expected that tunable half-metallicity disappears once CBM
touches spin-up VBM in a wide enough H-ZISN. By extrapo-
lation, one can find that the half-metal regime in H-ZISNs can
only exist for widths L � 11.3 nm (N � 32). Experimentally,
graphene nanoribbons with a width smaller than 10 nm have
been fabricated by various experimental techniques [34].

Up to now, edge magnetism of H-ZISN has been con-
sidered on the basis of HSE06 calculations. Although there
is an indication of the ferromagnetism (or, strictly speaking,
superparamagnetism taking into account the 1D character of
the system under consideration) in H-ZISNs, the magnetic
ground state cannot be conclusively determined within DFT
due to symmetry constraints imposed by periodic boundary
conditions. A more reliable description of magnetic properties
can be approached using the Heisenberg picture, which as-
sumes localization of magnetic moments. In order to use this
approach, we first construct a TB model which describes the
HSE06 electronic structure. We then map the TB Hamiltonian
onto the Heisenberg model to determine exchange interactions
[35]. After that, we discuss the magnetic properties of H-
ZISNs in more detail, including their temperature stability.
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（a） 6-H-ZISN (b) 7-H-ZISN (c) 8-H-ZISN (d)

FIG. 4. HSE06 band structures of (a) 6-H-ZISN, (b) 7-H-ZISN, and (c) 8-H-ZISN. (d) The energy difference between CBM and spin-up
VBM (green line), and the energy difference between the Fermi energy and CBM (gray line).

III. TIGHT-BINDING MODEL

We now turn to TB analysis of the band structure. Within
DFT calculations, the magnetic moment stems mainly from
the spin splitting of the valence band (VB), while the con-
duction band remains spin degenerate. Here, we aim at a
simplified description of the electronic structure of H-ZISNs
taking only relevant electronic bands into account. To this end,
we perform TB parametrization of the DFT Hamiltonian using
a one-dimensional (1D) two-band model,

Hσ =
∑
iσ

εσ
i c

†
iσ ciσ +

∑
ijσ

tσij c
†
iσ cjσ , (1)

where the summation runs over edge lattice sites, εσ
i is the

energy of an electron at site i with spin σ = ↑,↓, c
†
iσ (cjσ )

is the creation (annihilation) operator of electrons at site i (j )
with spin σ , and tσij is the hopping parameter between the ith
and j th sites, corresponding to spin σ . Spin-orbit coupling is
not included in the Hamiltonian equation (1), meaning that
there are no spin-flip processes (c†i↑cj↓ = 0). Such terms have
no direct effect on the isotropic exchange interaction [see
Eq. (3) below] and, therefore, are not relevant for our study.

The parameters of the Hamiltonian defined above are
determined by making use of the Wannier functions (WFs)
[36]. The spin-polarized DFT electronic structure of a pe-
riodic material is characterized by the band dispersion εσ

ik

and extended Bloch states |ψσ
nk〉, defined in terms of the

band index n, crystal momentum k, and spin projection σ .
Using the fact that there are two weakly interacting bands for
each spin around the Fermi energy in H-ZISNs, we construct
a set of two spin-dependent WFs |wσ

i (r )〉 for N -H-ZISN
(N = 5–12). To this end, we do Fourier transformation of
the corresponding Bloch states, |wσ

nR〉 = ∑
k e−ikR|ψσ

nk〉. The
resulting WFs are schematically depicted in Fig. 5(a). The
Wannier orbitals (WF1 and WF2) are localized along the
Se and In edge, respectively. We then transform the DFT
Hamiltonian in the WFs basis 〈wσ

i |H |wσ
j 〉 and determine pa-

rameters appearing in Eq. (1), i.e., the on-site energies εσ
i and

hoppings integrals tσij . For this purpose, we use the WANNIER90
code [37]. The relevant parameters as well as WF spreads,
�σ

i = 〈wσ
i |r̂2|wσ

i 〉 − |〈wσ
i |r̂|wσ

i 〉|2, are given in Table I, while
a schematic representation of the TB model is shown in
Fig. 5(b). Already for N = 5, the interaction between the
H-ZISN edges is so weak that the corresponding hoppings
can be neglected (|tσij | < 0.01 eV). The hoppings beyond the
second coordination sphere turn out to be negligible too.

For N = 12 all the parameters are almost converged. From
Table I one can also see that there is only one magnetic orbital
(WF2) with nonzero spin splitting �2 = ε

↑
2 − ε

↓
2 , while the

other orbital (WF1) is spin degenerate (�1 = 0) indepen-
dently of the ribbon width.

As an example, the band structure of 5-H-ZISN calculated
from the two-band TB model is shown in Fig. 6, which
describes the HSE06 electronic structure near the Fermi level
very well. Within the TB model, relevant bands can be pro-
jected on WFs, which is shown by color in Figs. 6(a) and
6(b). One can see that WFs localized along the In-terminated
edge contribute exclusively to the valence band, while WFs
from the Se-terminated edge describe the conduction band.
This is consistent with the PBE and HSE06 results presented
earlier. The constructed TB model can be applied to estimate

······

······

······

Width N1

WF11 ( )

1 ( )

2

WF2

2 ( )

2 ( )

(a) WF1 WF2

(b)

FIG. 5. (a) Real-space distribution of WFs corresponding to the
basis of the TB Hamiltonian for H-ZISNs. (b) Schematic repre-
sentation of the most relevant hoppings tσ

i between the Wannier
orbitals in the TB model for H-ZISN. The orbitals are shown by
gray labeled circles, localized at the corresponding WF centers. Each
orbital is characterized by the spin splitting �i = ε

↑
i − ε

↓
i . Numerical

parameters are listed in Table I.

114001-4



TUNABLE HALF-METALLICITY AND EDGE MAGNETISM … PHYSICAL REVIEW MATERIALS 2, 114001 (2018)

TABLE I. Parameters of the TB model for N -H-ZISN (N = 5–12) as defined by Eq. (1). �i = ε
↑
i − ε

↓
i is the spin splitting of the orbital i

(in eV), and tσ
ij is the spin-dependent (σ = ↑, ↓) hopping parameter (in eV) between orbitals i and j as is schematically shown in Fig. 5. �σ

i

denotes quadratic spread (in Å
2
) associated with the orbital i and spin σ (see text for the definition). NN and 2NN stand for the nearest-neighbor

and second-nearest-neighbor interactions, respectively.

WF1 (Se edge) WF2 (In-edge)

Width N �
↑(↓)
1 �1 t

↑(↓)
1 (NN) t

↑(↓)
1 (2NN) �

↑
2 �

↓
2 �2 t

↑
2 (NN) t

↓
2 (NN) t

↑(↓)
2 (2NN)

5 12.1 0.00 −0.14 −0.12 10.2 9.8 0.23 0.16 0.19 −0.05
6 12.4 0.00 −0.14 −0.11 10.9 10.1 0.29 0.16 0.20 −0.06
7 12.5 0.00 −0.13 −0.11 11.0 9.9 0.36 0.15 0.20 −0.06
8 13.2 0.00 −0.12 −0.11 10.6 9.9 0.44 0.16 0.21 −0.06
9 13.3 0.00 −0.12 −0.11 11.8 10.0 0.44 0.16 0.21 −0.06
10 12.9 0.00 −0.12 −0.11 11.4 9.4 0.46 0.16 0.22 −0.06
12 12.8 0.00 −0.12 −0.11 11.1 9.1 0.47 0.16 0.21 −0.06

exchange interactions within the Heisenberg model, and for
the calculation of transport properties.

IV. HEISENBERG MODEL

Because of sufficiently strong localization of magnetic mo-
ments in H-ZISNs, the magnetic interactions can be analyzed

(a) Spin up

(b) Spin down

FIG. 6. Comparison between the spin-resolved band structures
of 5-H-ZISN calculated using HSE06 (solid) and the TB model
(dashed) [Eq. (1)]. Contribution from WFs is shown by different
colors: red for WF1 and blue for WF2 (see text for details). DOS
is calculated from the TB model in the same way as described in the
caption of Fig. 3.

in terms of the Heisenberg model,

H = −
∑
i �=j

Jij SiSj , (2)

where Jij is the exchange coupling between spins at sites i

and j , and Si(j ) is the unit vector pointing in the direction
of the local magnetic moment at site i (j ). To calculate
exchange interactions, we make use of the magnetic force
theorem, which allows us to map the TB model introduced
above onto the classical Heisenberg model. For a lattice with
basis, exchange interactions can be written in the following
form [38]:

J
αβ

ij = 1

4π

∫ Ef

−∞
dε Im

[
�αG

αβ↓
ij (ε)�βG

βα↑
ji (ε)

]
, (3)

where i, j and α, β are indices of the unit cell and orbitals,
respectively. �α is the exchange splitting of the αth WF
calculated from diagonal elements of the spin-polarized WF
Hamiltonian as �α = H ↑

αα − H ↓
αα , Ef is the Fermi energy,

and G
αβ↓
ij (ε) is the real-space Green’s function, which can

be obtained from its reciprocal counterpart via the Fourier
transform, G

αβσ

ij (ε) = ∑
k G

αβσ

k (ε)e−ik(Ri−Rj ). In turn, the
reciprocal-space Green’s function reads (in the matrix form)

Gσ
k (ε) = [ε − Hσ (k) + iη]−1, (4)

where Hσ (k) is the reciprocal Hamiltonian, whose matrix
elements can be easily obtained from the TB model, Eq. (1).
To calculate the reciprocal-space Green’s function, we use 104

k points and η = 0.1 meV.
The magnetic lattice of H-ZISNs can be simplified to a 1D

magnetic chain because magnetic moments entirely localized
along one of the edges. The resulting exchange interactions
calculated using Eq. (3) up to the third coordination sphere
are summarized in Table II for different ribbon widths. One
can see that the leading exchange interaction JNN is FM,
which depends considerably on the ribbon width N , ranging
from JNN ≈ 2 meV (N = 5) to JNN ≈ 5 meV (N = 12).
Similar to the magnetic moments, JNN is almost converged
with the ribbon width at N = 12. The more distant interac-
tions (2NN and 3NN) are smaller by more than an order of
magnitude. One can see, however, that J2NN and J3NN are
comparable in magnitude, whereas their signs are different for
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TABLE II. Exchange interactions calculated up to the third-
nearest-neighbor (3NN) for undoped N -H-ZISN (N = 5–12) by
using the magnetic force theorem [Eq. (3)]. The parameters listed
are numerically accurate to within 0.01 meV.

Width N NN (meV) 2NN (meV) 3NN (meV)

5 2.12 −0.15 −0.08
6 2.91 −0.22 0.05
7 3.53 −0.26 0.10
8 4.45 −0.16 0.21
9 4.27 −0.16 0.19
10 4.56 −0.11 0.23
12 4.76 0.15 0.24

most N ’s. This behavior is typical to the Ruderman-Kittel-
Kasuya-Yosida interactions, which is not unexpected taking
into account that H-ZISNs are conductors at zero doping. In
Figs. 7(a) and 7(b), we show how the exchange interactions
depend on the Fermi energy considering the examples of
5-H-ZISN and 12-H-ZISN. In the first case [N = 5, Fig. 7(a)],
a rapid decay of the exchange interaction can be observed for
positive Fermi energies (n doping). On the contrary, the ex-
change interactions monotonously increase for negative Fermi
energies (p doping) until Ef ≈ −0.15 eV. In the second case
[N = 12, Fig. 7(b)], JNN has its maximum at zero Fermi
energy and exchange interactions decrease rapidly down to

（a）

（b）

FIG. 7. Exchange interactions for 5-H-ZISN (a) and 12-H-ZISN
(b) calculated as a function of the Fermi energy shown up to the third
coordination sphere.

zero at positive Fermi energy around 0.2 eV. In this case,
both n and p doping slightly reduce JNN. From Fig. 7 one
can also see how J2NN and J3NN change their sign as function
of the Fermi energy. Overall, in the context of doping-induced
half-metallicity in H-ZISNs discussed earlier, exchange inter-
actions are not significantly affected by p-type doping.

Having obtained the exchange interactions between mag-
netic moments, we can determine the magnetic ground state
of H-ZISNs. Compared to the dominant FM interaction JNN,
other interactions are essentially negligible. In this situation,
one can expect either FM ground state or spin spiral state
with a large spiral vector. In order to check the stability
of FM magnetic configuration, we take the 2NN interaction
into account, which is AFM for narrow H-ZISN. To this
end, we consider the total energy of the coplanar spin spi-
ral H (θ ) = ∑

ij Jij Si (φi )Sj (φi + θ ) as function of the phase
shift between spins, θ . We then minimize H (θ ) with respect
to θ , and find that the ground state corresponds to θ = 0◦,
which corresponds to the FM case. The result is not sur-
prising because for the one-dimensional Heisenberg chain
with J1 − J2, where J1 is the FM interaction and J2 is the
AFM interaction, the ground state is FM when | J2

J1
| < 0.25

[39]. Therefore, disregarding temperature effects and long-
wavelength fluctuations, the ground-state magnetic ordering
of H-ZISN is FM.

V. CORRELATION LENGTH

Up to now magnetism in H-ZISNs has been discussed
without considering temperature, which induces fluctuations
of magnetic moments. Temperature effects are especially
important for magnetic nanoribbons since there is no long-
range magnetic order in 1D at any finite temperature [40].
Generally, the range of magnetic order is characterized by the
correlation length ξ , which defines the decay law of the spin
correlation function with distance, 〈SiSj 〉 = 〈SiSi〉exp(−|ri −
rj |/ξ ) [41]. To obtain the correlation length, we start from the
1D Heisenberg model given by Eq. (2). Taking into account
the dominant role of NN exchange interaction (JNN � J2NN)
and neglecting intersite magnetic anisotropy (〈SiSi〉 = 1), the
spin Hamiltonian can be simplified to the form of 1D Ising
model, H = −JNN

∑
i S

z
i S

z
i+1. In the thermodynamic limit,

the corresponding correlation length in zero field can be
written as [42]

ξ =
{

ln

[
tanh

(
JNN

kBT

)]}−1

. (5)

We evaluate the zero-field spin correlation length in H-ZISN
as a function of temperature and the ribbon width N . As can
be seen from Fig. 8, the correlation length increases for larger
N and converges to a constant value at N ≈ 12. The different
correlation length observed for varying ribbon width is related
to the difference in exchange interactions (see Table II). At
room temperature (300 K), the largest (N = 12) correlation
length ξ = 0.6 unit cell (≈0.3 nm), meaning that spintronics
devices based on magnetic H-ZISNs cannot be operated at
room temperature if its length is beyond the atomic scale. At
liquid-nitrogen temperature (≈77 K), the correlation length
is considerably larger, ξ = 2.3 unit cells (≈1 nm). The size
of a device could be extended beyond the micrometer scale
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FIG. 8. Spin correlation length of N -H-ZISN calculated within
the Ising model for different widths (N = 5–12) as a function of
temperature.

at low enough temperature, e.g., liquid-helium temperature
(≈4.4 K). Although the zero-field correlation lengths are not
particularly large, the magnetic stability of the nanoribbons
can be further enhanced by the application of external mag-
netic field, or by a substrate with strong spin-orbit coupling.

VI. SPIN-DEPENDENT TRANSPORT

To gain insight into the role of magnetism in the trans-
port properties of H-ZISNs, we calculate the spin-dependent
electronic conductivity as a function of chemical potential
(doping). The expression for dc conductivity as a function of
chemical potential μ and temperature T reads [43]

σ (μ, T ) = e2

V

∑
n,k

∫
dE

(
−∂f (E,μ, T )

∂E

)
v2

nkτnkδ(E − Enk ),

(6)

where the summation runs over all relevant bands n and
k points of the Brillouin zone. V = LxLyLz is effective
nanoribbon volume with Lx and Ly being the ribbon width
and lattice constant along the periodic direction, and Lz =
8.32 Å [44] is the effective thickness of a single layer
in InSe bulk crystal. Enk and vnk are the correspond-
ing band energy and group velocity, and f (E,μ, T ) =
{exp[(E − μ)/T ] + 1}−1 is the Fermi-Dirac distribution
function, where we take T = 300 K in all calculations. In
our case, group velocity is nonzero only along one (periodic)
direction. τnk is the carrier lifetime, for which we adopt the
relaxation-time approximation and assume that the lifetime
τnk is independent of both n and k, i.e., τnk = τ . Here, we
do not specify the scattering mechanism, which may include
scattering on defects [45] or phonons [46]. To assume a
reasonable lifetime, we estimate the group velocity vnk =
1
h̄

∂En(k)
∂k

from the TB band structure. The resulting group
velocities are found to be on the order of 105–106 m/s. Using
the approximate relation for the mean free path ξl ≈ vτ , we
choose τ = 10 fs to ensure ξl ∼ 1 nm. In order to calculate
σ (μ, T ) for different ribbon widths, we use the BOLTZWANN

code [47] in conjunction with WFs obtained previously (see
Sec. III).

（a） 5-H-ZISN

(b) 12-H-ZISN

FIG. 9. Electrical conductivity calculated for 5-H-ZISN (a) and
12-H-ZISN (b) for spin-up (red lines) and spin-down (blue lines)
conduction channels, as well as the ratio between them (black lines)
shown as a function of chemical potential. The calculations are
performed at T = 300 K.

Spin-dependent conductivity calculated for two represen-
tative cases, 5-H-ZISN and 12-H-ZISN, is shown in Fig. 9.
Overall, the conductivities resemble DOS as there are no
anomalies in the group velocity. At zero chemical potential,
both spin-up and spin-down electrons have a comparable
contribution to the conductivity independently of the ribbon
width. At positive chemical potential (n doping) magnetism in
H-ZISNs disappears (see Fig. 7) and σdown/σup → 1. The sit-
uation for negative chemical potential (p doping) is different.
Due to the valence band splitting, there is an energy region
in which σup ≈ 0, resulting in a sharp peak of σdown/σup.
Therefore, in this regime the system behaves as a perfect
spin filter. The corresponding (critical) chemical potentials
depend on the ribbon width, ranging from −0.4 eV (N =
12) to −0.2 eV (N = 5). The dependence of the electronic
conductivity on the spin channel in H-ZISNs makes these
systems promising candidates for the realization of spintronic
effects at the nanometer scale.

VII. CONCLUSION

We have systematically studied the electronic and magnetic
properties of ZISNs with edges saturated by hydrogen. By
performing hybrid-functional first-principles calculations, we
find that H-ZISNs are materials with tunable half-metallicity
and short-range magnetic order. Properties of H-ZISNs are
demonstrated to be highly susceptible to charge doping.
Particularly, p-type doping turns semimetallic H-ZISNs into
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half-metal with spin polarization emerging along the In-
terminated edge. On the contrary, n-type doping results in
a spin-degenerate (nonmagnetic) ground state. To analyze
magnetic interactions in H-ZISNs, we construct a tractable
TB model and perform a mapping to the Heisenberg model.
We find that the dominant interaction in H-ZISNs is ferro-
magnetic, whose magnitude considerably increases with the
ribbon width. This behavior appears interesting for spintronic
applications, for instance, in the context of spin filtering.
Indeed, our analysis of spin-dependent electronic transport
reveals the existence of a regime with spin-selective dc
conductivities. The feasibility of such applications is pri-
marily determined by the spin correlation length. Our es-
timation leads to 0.3 nm for room temperatures, and to 1
nm for liquid-nitrogen temperatures. Further enhancement of

magnetic stability could be achieved by the presence of
a substrate, or external magnetic field. Our findings are a
step forward toward the understanding of magnetism in low-
dimensional materials, which can stimulate further theoretical
and experimental studies.
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