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Quantum Hall effect and semiconductor-to-semimetal transition in biased black phosphorus
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We study the quantum Hall effect of two-dimensional electron gas in black phosphorus in the presence of
perpendicular electric and magnetic fields. In the absence of a bias voltage, the external magnetic field leads to a
quantization of the energy spectrum into equidistant Landau levels, with different cyclotron frequencies for the
electron and hole bands. The applied voltage reduces the band gap, and eventually a semiconductor-to-semimetal
transition takes place. This nontrivial phase is characterized by the emergence of a pair of Dirac points in
the spectrum. As a consequence, the Landau levels are not equidistant anymore but follow the εn ∝ √

nB

characteristic of Dirac crystals as graphene. By using the Kubo-Bastin formula in the context of the kernel
polynomial method, we compute the Hall conductivity of the system. We obtain a σxy ∝ 2n quantization of the
Hall conductivity in the gapped phase (standard quantum Hall effect regime) and a σxy ∝ 4(n + 1/2) quantization
in the semimetallic phase, characteristic of Dirac systems with nontrivial topology.

DOI: 10.1103/PhysRevB.93.245433

I. INTRODUCTION

Black phosphorus (BP) is a direct band gap semiconductor
that has been recently exfoliated to obtain atomically thin
samples [1–3]. Each BP layer forms a puckered surface due
to sp3 hybridization, revealing a highly anisotropic electrical
mobility [4,5], an ambipolar field effect, linear dichroism in
optical absorption spectra [2,4,6–8], and anisotropic plasmons
[9]. Encapsulation of BP with hexagonal boron nitride has
led to high-carrier-mobility devices, with the observation of
quantum magneto-oscillations [10–14] and the integer quan-
tum Hall effect [15]. One of the most surprising characteristics
of BP is its strong response to external electric and strain fields.
As a consequence, the electronic and optical properties of this
material can be efficiently tuned by applying an external bias
voltage [16–20] or by strain engineering [21–25]. In particular,
it is possible to drive a semiconductor-to-semimetal transition,
with the appearance of a Dirac-like dispersion [16–18,26].

In this paper we study the electronic spectrum of biased
BP in the presence of a strong magnetic field. For this we
use a tight-binding model which properly accounts for the
band structure in a wide energy window of the spectrum
[27,28]. The electronic density of states (DOS) is calculated
from the solution of the time-dependent Schrödinger equation
within the framework of the tight-binding propagation method
[29–31], which is an efficient numerical tool in large-scale
calculations of realistic systems with more than millions
of atoms. In the absence, or for moderate values, of the
applied bias, the obtained Landau level (LL) quantization
is that of a standard two-dimensional electron gas (2DEG)
with a set of equidistant LLs [32–34]. When the applied
electric field is strong enough, the BP suffers a semiconductor-
to-semimetal transition, with the appearance of a set of
nonequidistant LLs, associated with Dirac-like cones that
emerge in the spectrum. Such an LL spectrum resembles that of
graphene in the quantum Hall regime, with the difference that
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biased BP presents a pronounced electron-hole asymmetry.
As we increase the energy, the spectrum acquires a highly
nontrivial quantization due to the presence of a Van Hove
singularity, with a corresponding change in the topological
Berry phase. We further calculated the Hall conductivity from
the Kubo-Bastin formula [35], in the context of the kernel
polynomial method [36,37]. We find that unbiased BP presents
the characteristic integer quantum Hall effect with σ IQHE

xy =
2n(e2/h), whereas biased semimetal BP presents a relativistic
quantum Hall effect characteristic of Dirac materials, with
σ RQHE

xy = 4(n + 1/2)(e2/h) [38]. Although we perform the
numerical calculations for the simplest case of bilayer BP, the
physical results should hold for any multilayer sample exposed
to external magnetic and electric fields.

II. ELECTRONIC BAND STRUCTURE AND LANDAU
QUANTIZATION

BP is formed by stacking of phosphorene layers, coupled
with a van der Waals interaction. Single-layer BP contains
two atomic layers and two kinds of P-P bonds (in-plane
and interplane) [4], as shown in Fig. 1. Our calculations are
done using a GW -based tight-binding model that properly
reproduces the conduction and valence bands in an energy
range ∼0.3 eV beyond the gap [27,28],

H =
∑
i �=j

tij c
†
i cj +

∑
i �=j

tp,ij c
†
i cj , (1)

where c
†
i (ci) creates (annihilates) an electron at site i, and

10 intralayer tij and 5 interlayer tp,ij hopping terms are
considered in the model. The values of the 10 intralayer
hopping terms [shown in Fig. 1(a)] are t1 = −1.486 eV,
t2 = 3.729 eV, t3 = −0.252 eV, t4 = −0.071 eV, t5 = −0.019
eV, t6 = −0.186 eV, t7 = −0.063 eV, t8 = 0.101 eV, t9 =
−0.042 eV, t10 = −0.073 eV, and the 5 interlayer hopping
terms [Fig. 1(b)] are tp1 = 0.524 eV, tp2 = 0.180 eV, tp3 =
−0.123 eV, tp4 = −0.168 eV, tp5 = 0.005 eV [28]. The effect
of an electric field on the electronic dispersion is considered
by introducing linearly a biased on-site potential difference

2469-9950/2016/93(24)/245433(8) 245433-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.245433


YUAN, VAN VEEN, KATSNELSON, AND ROLDÁN PHYSICAL REVIEW B 93, 245433 (2016)

FIG. 1. Lattice structure of single-layer (a) and bilayer (b) black
phosphorus. Circles of different colors correspond to atoms located in
different planes within a single puckered layer. The relevant hopping
terms considered in Hamiltonian (1) are indicated: 10 in-plane
hopping terms (a) and 5 interlayer terms (b).

between the outmost planes of two layers, without considering
the screening effect. For example, in a single layer we include
a different on-site potential ±�/2 in the top and bottom
sublayers, respectively, whereas in a bilayer BP we include a
sequence of on-site potentials in the four planes with the form
�/2 + vb�, �/2 − vb�, −�/2 + vb�, and −�/2 − vb�,
where vb = 0.202 is a linear scaling factor accounting for
the lattice position along the direction of the external electric
field [28]. Figure 2 shows the band structure obtained from
the tight-binding model, (1), for three representative cases,
and their corresponding constant-energy contours (CECs) are
shown in Fig. 3. As is well known [4] for unbiased BP
(� = 0) the band structure corresponds to an anisotropic direct
band-gap semiconductor, with the gap placed at the � point of
the Brillouin zone.

It is interesting to consider the different effects of a
perpendicular electric field in the band structure of single-layer
versus multilayer BP. In Fig. 4 we show the evolution of the
band gap at the � point as a function of the biased potential,
defined from the energy difference between the valence and the
conduction band edges as obtained from the full tight-binding
model, (1). We observe that, whereas the gap increases with
� in single-layer BP, the gap in bilayer BP decreases with
the applied bias, and eventually a semiconductor-to-semimetal
transition takes place. A similar closing of the gap with the
bias potential occurs for any multilayer sample. The opposite
behavior between single-layer and multilayer BP can be

FIG. 3. Constant energy contours of biased bilayer BP for the
three values of the applied voltage used in Fig. 2. For � > �c,
corresponding to the semimetal phase with the creation of Dirac
points in the �-X direction of the Brillouin zone.

understood analytically by using the tight-binding model, (1),
with only the leading hopping terms, namely, t1, t2, and tp1. In
the absence of a perpendicular electric field, � = 0, the gap

FIG. 2. Band structure of biased bilayer BP for three representative values of the applied voltage: unbiased (� = 0), for which the system
is gapped; � = �c, for which the gap closes and there is a band crossing at the � point; and � > �c, corresponding to the semimetal phase
with the creation of Dirac points in the �-X direction of the Brillouin zone.
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FIG. 4. Evolution of the valence and conduction band edges at
the � point as a function of the biased potential �, for single-layer
and bilayer BP, as calculated from the full tight-binding model, (1).
The dashed line in (b) indicates the chemical potential energy in the
semimetal phase.

in single-layer BP is controlled by the difference between the
in-plane hopping parameter t1 and the interplane t2,

Eg1L(� = 0) ≈ 4t1 + 2t2, (2)

where it is important to note the different signs of the two
terms, t1 ≈ −1.5 eV < 0 and t2 ≈ 3.7 eV > 0. For bilayer BP,
the gap at � = 0 is approximately given by

Eg2L(� = 0) ≈ 4t1 + 2

√
t2
2 + 2t2

p1 − 2|tp1|
√

t2
2 + t2

p1. (3)

Note that the interlayer hopping tp1 in bilayer BP enters into the
gap equation as an extra contribution to the interplane hopping
term in single-layer BP, t2. In the presence of a biased potential,
and within the above approximation, the gap in single-layer
BP can be expressed as

Eg1L ≈ 4t1 + 2

√
t2
2 +

(
�

2

)2

, (4)

whereas for bilayer BP the gap is given by

Eg2L ≈ 4t1 + 2

√
t2
2 +

(
�

2

)2

+ finter, (5)

where we have defined

finter = 2t2
p1 + v2

b�
2 −

√
t2
2

(
4t2

p1 + �2
) + (−2t2

p1 + vb�2
)2

.

(6)

One can easily see that, for the hopping parameters of the
model, there is no real solution for � that closes the gap

in single-layer BP, which should fulfill �c
1L ≈ 2

√
4t2

1 − t2
2 .

Therefore, this simple analytical analysis shows that appli-
cation of a perpendicular electric field has the effect of
opening the gap in single-layer BP, in agreement with the
full tight-binding results shown in Fig. 4. Bilayer BP, on
the other hand, has a real solution for the closing of the
gap. The analytical expression is too long to be given here,
but one can simply observe that the term finter, as defined
in Eq. (6), is <0. This leads to a correction for the second
contribution in the gap equation, (5), which can fully cancel

the 4t1 term, driving a semiconductor-to-semimetal transition.
From now on, we focus on the multilayer case, for which the
aforementioned transition can take place in the presence of
a bias potential. The topological nature of the transition has
been addressed by Liu et al. [17] by combining DFT and group
theory analysis [17]. Semiconducting unbiased BP has valence
and conduction bands with different symmetric representations
at the � point (point group D2h): the conduction band has
the representation Ag(�1), whereas the valence band has the
representation B3u(�8). One can define the inversion energy
as �inv = E�1 − E�8. When the bias voltage is high enough,
the gap is 0 and �inv becomes negative, indicating a band
inversion. This band inversion is accompanied by a Dirac-
like band crossing, as shown in Fig. 2. This band crossing
is protected by fractional translation symmetry due to the
different characters of the two bands. Therefore, the spectrum
can be described at low energies by a 2 × 2 Dirac equation.
The analysis of the wave function performed in Ref. [17]
for multilayer samples reveals that the �1 states are mainly
localized in the top layer, whereas the spectral weight of the
�8 states is stronger in the bottom layer.

We insist that the approximation considered here does
not take into account electrostatic screening due to the
external electric field. This effect has been studied in Ref.
[9], using a low-energy continuum model and within non-
linear Thomas-Fermi theory. The potential difference across
a BP sample obtained there suggests that BP presents an
intermediate screening behavior between the strong-coupling
limit of graphene, where the carriers concentrate close to
the interface, and the weak-coupling regime with reduced
screening properties that dominates the screening of other van
der Waals semiconducting materials such as MoS2.

The presence of a magnetic field is accounted for by means
of the Peierls substitution, which replaces the hopping term
between two sites,

tij → tij exp

[
i
2π

�0
e

∫ Rj

Ri

A · dl
]
, (7)

where �0 = hc/e is the flux quantum and A = (−By,0,0) is
the vector potential in the Landau gauge, B being the strength
of the magnetic field. The band structure can now be calculated
by choosing a ribbon with 1 unit cell width and a height that
exactly matches the period of the Peierls phase. After obtaining
the Hamiltonian as a function of the momentum,

H(k) =
∑
i �=j

tij c
†
i cj e

ik·(ri−rj ) +
∑
i �=j

tp,ij c
†
i cj e

ik·(ri−rj ), (8)

the energy eigenvalues corresponding to a momentum k can
be found with exact diagonalization. Our results lead to a band
structure composed of a set of LLs, as given in Fig. 5. The
structure of the LL spectrum is discussed in detail later.

The DOS of the system is calculated by using an algorithm
based on the evolution of the time-dependent Schrödinger
equation. For this we use a random superposition of all basis
states as the initial state |ϕ〉

|ϕ〉 =
∑

i

ai |i〉, (9)
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FIG. 5. Landau level structure obtained from exact diagonal-
ization of Hamiltonian (8) for (a) B = 32.5 T, (b) B = 65 T, and
(c) B = 130 T. The Fermi level is indicated by the dashed red line
and falls in the gap (skipped regions) for � = 0.

where ai are random complex numbers normalized as∑
i |ai |2 = 1, and the DOS is calculated as a Fourier transform

of the time-dependent correlation functions [29,39],

d(ε) = 1

2π

∫ ∞

−∞
eiετ 〈ϕ|e−iHτ |ϕ〉dτ. (10)

In the unbiased semiconducting phase (� = 0) the DOS
(per unit area) at low energies is approximately a constant
d2DEG(ε) = gmb/2π where g = gs = 2 is the spin degeneracy
and m

c,v
b = √

m
c,v
x m

c,v
y is the band mass of the conduction (c)

or valence (v) bands, as obtained in Fig. 6(a). In the presence
of a quantifying magnetic field, the DOS is discretized into a
set of Landau levels, as shown in Fig. 6(d) (see also Fig. 5). We
note that the finite broadening in the LLs is due to the energy
resolution of the numerical simulations, which is limited by the
size of the sample used in the calculation (number of atoms),
as well as the total number of time steps, which determines the
accuracy of the energy eigenvalues. The obtained LL spectrum
consist of two sets of equidistant LLs separated by the band
gap Eg with energy εc,v

n = ±Eg/2 ± ωc,v
c (n + 1/2) (where n

is a positive integer) separated by the cyclotron frequency
ωc,v

c = eB/m
c,v
b . Since the system lacks electron-hole sym-

metry, the cyclotron frequency is different for the valence
and conduction bands. For � = �c = 1.783 eV, the system
suffers a semiconducting-to-semimetal transition, with a band
crossing at the � point [see Fig. 2(b)]. As shown in Fig. 6(b),
the DOS around such a band crossing is ∝ √

ε, leading to a set
of nonequidistant LLs at energies close to the band crossing
energy, with dispersion εn ∝ ±[(n + 1/2)B]2/3 [40,41]. As we
move away from this band crossing, the LL spectrum has the
same characteristics as in the previous case of unbiased BP,
recovering the standard quantization of a 2DEG [Fig. 6(e)].

The most interesting situation occurs for higher bias
voltages, well beyond the transition. For � = 2.2 eV > �c,
the band dispersion presents two Dirac points, in the �-X
direction, and it is gapped in the �-Y direction [see Figs. 2(c)
and 3(c)]. As studied by Montambaux et al. within the
framework of a universal Hamiltonian that describes the
merging of Dirac points in the electronic spectrum of two-
dimensional crystals [41,42], the topological character of the
transition can be understood from the appearance of a Berry
phase for � > �c, which takes the values ±π around each
Dirac point. If we reduce the bias voltage, we recover the
trivial phase with the corresponding annihilation of the Berry
phase for � < �c. For low carrier densities, the Fermi surface
consists of two pockets encircling the Dirac points along the
�-X direction [see Fig. 3(c)]. The DOS close to the Dirac
points behaves as [41] dDirac(ε) ∝ |ε|/vFxvFy , where vFx(y)

is the Fermi velocity along the x(y) direction within the
Dirac cones. In a magnetic field, the LL spectrum is that of
a semimetal with a relativistic quantization, εn ∝ ±√

nB [see
Fig. 6(f)]. The shift of n + 1/2 → n in the LL energy spectrum
for � > �c is a consequence of the generation of ±π Berry
phases around the Dirac points. If we increase the energy,
we reach a highly nontrivial LL quantization because of the
presence of a saddle point in the band structure, at which there
is a transition from CECs encircling the Dirac points to CECs
encircling the � point. In the semiclassical limit, the cyclotron
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FIG. 6. Density of states and Landau level spectra of pristine and biased bilayer BP for the biased potential indicated. (a–c) B = 0 and
(d–f) B = 65 T. The calculated system contains 2 × 4800 × 4800 atomic sites, with periodic boundary conditions in both the X and the Y

directions. To illustrate the evolution with a magnetic field of the DOS of the semimetallic phase (� = 2.2 eV), we include in (f) the DOS at
B = 0 (dashed red line).

orbits in reciprocal space follow the CECs. Therefore, at the
saddle point there is a change in the topological Berry phase
from ±π for orbits encircling the Dirac points to 0 for orbits
encircling the � point [43,44]. The two series of LLs shown
in Fig. 6 is due to the different characters of the cyclotron
orbits at both sides of the saddle point, with different cyclotron
frequencies, that merge at the saddle point. This transition
resembles that of highly doped graphene at energies around
the Van Hove singularity [45,46].

III. HALL CONDUCTIVITY

The next step in our analysis, once we understand the LL
spectrum of the biased system, is the calculation of the Hall
conductivity σxy . For this aim, we use an efficient numerical
approach, recently developed by Garcı́a et al. [36], that is
based on a real-space implementation of the Kubo formalism
where both diagonal and off-diagonal conductivities are
treated on the same footing. In the limit ω → 0 and for
noninteracting electrons, the so-called Kubo-Bastin formula
for the conductivity can be used to obtain the elements of the
static conductivity tensor [35–37],

σαβ(μ,T ) = i�e2

A

∫ ∞

−∞
dεf (ε)Tr

〈
vαδ(ε − H)vβ

dG+(ε)

dε

− vα

dG−(ε)

dε
vβδ(ε − H)

〉
, (11)

where μ is the chemical potential, T is the temperature, A is
the area of the sample, vα is the α component of the velocity
operator, G±(ε) = 1/(ε − H ± iη) are the Green’s functions,
and f (ε) is the Fermi-Dirac distribution. Here the average is

performed by using the same random initial state as in the
calculation of DOS. By expanding the delta and the Green’s
functions G±(ε) in terms of Chebyshev polynomials (using
the so-called kernel polynomial method) [36], the conductivity
tensor becomes

σαβ(μ,T ) = 4e2
�

πA

4

�E2

∫ 1

−1
dε̃

f (ε̃)

(1 − ε̃2)2

∑
m,n

�nm(ε̃)μαβ
nm(H̃ ),

(12)

where �E is the energy range of the spectrum, ε̃ is the rescaled
energy within [−1,1], �mn(ε̃) and μ

αβ
mn(H̃ ) are functions of the

energy and the Hamiltonian, respectively. More precisely,

�mn(ε̃) ≡ Tm(ε̃)(ε̃ − in
√

1 − ε̃2)ein arccos(ε̃)

+ Tn(ε̃)(ε̃ + im
√

1 − ε̃2)e−im arccos(ε̃) (13)

is a scalar function of the rescaled energy, and

μαβ
mn(H̃ ) ≡ gmgn

(1 + δn0)(1 + δm0)
Tr[vαTm(H̃ )vβTn(H̃ )] (14)

is independent of the energy, where Tm(x) is the Chebyshev
polynomial defined according to the recurrence relation
Tm(x) = 2xTm−1(x) − Tm−2(x) with T0(x) = 1 and T1(x) =
x. The Gibbs oscillations due to the truncation of the expansion
in (12) are smoothed by using the Jackson kernel gm [36,47].

Our results for σxy are shown in Fig. 7. For � = 0
the Hall conductivity consists of a series of plateaus with
the well-known sequence σxy = 2ne2/h, characteristics of a
standard 2DEG with a parabolic band dispersion (although the
present case of BP is rather described by a paraboloidal band).
Our numerical calculations show the same quantization of the
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YUAN, VAN VEEN, KATSNELSON, AND ROLDÁN PHYSICAL REVIEW B 93, 245433 (2016)

FIG. 7. Hall conductivity of pristine and biased BP for the biased potentials used in Fig. 6. The temperature is T = 0.01 K and the magnetic
field is B = 130 T. The truncation order for the kernel polynomial in Eq. (12) is M = 15 000. The calculated system contains 2 × 600 × 600
atomic sites, and the results are averaged over five random realizations of initial states.

Hall conductivity at the transition point � = �c [Fig. 7(c)].
This is due to the fact that, right at the transition, there is
a single crossing of the bands at the time-reversal-invariant
� point of the Brillouin zone [41,42]. Most saliently, for
� > �c [Fig. 7(c)] the Hall conductivity presents plateaus
at σxy = 4(n + 1/2)e2/h. This is due to the topological nature
of the semimetallic phase, which is well captured by the
numerical method. The plateau structure becomes blurred at
high energies, which is an artifact due to the finite truncation
order of the kernel polynomial approximation as well as
the finite size of the sample [36]. These artifacts can be
improved with a higher truncation order of the expansion
and by considering a larger sample size. This would lead
to an initial state, obtained from Eq. (9), that is a more
accurate representation of the whole energy spectrum [29,39].
Furthermore, it has been shown that the convergence of the
Hall conductivity in Eq. (12) is faster with larger magnetic
fields [36]. Therefore, in order to catch several Landau levels
within the emerged Dirac cones, the large magnetic field of
B = 130 T is used in the calculations. Lower magnetic fields
will give similar qualitative behaviors for the LL spectrum
and for the Hall conductivity. In spite of the above choices
in the simulation, the convergence of the results is still slow,
especially if the band structure contains different topological
features within a small energy range, such as in the case
with � > �c. We adopted a truncation order as large as
M = 15 000 for the kernel polynomial decomposition (the
computational costs are proportional to M2 and the maximum
truncation order used in Ref. [36] is M = 6144), and the
simulated systems consist of 2 × 600 × 600 atomic sites.
However, it is still not enough to overcome the blurred effects
in the high-energy plateaus. Further calculations with a larger
truncation order or sample size are beyond the computational
resource that we can reach.

IV. DISCUSSION AND CONCLUSIONS

We note that the emergence of Dirac points in the spectrum
of biased black phosphorus can be understood by thinking of
the BP lattice as a honeycomb lattice (like the one in graphene)
in which one of the three hopping terms between nearest-
neighbor atoms can be different from the other two [41]. This
is indeed the case in BP, in which two of the three nearest
neighbors of one atom are on the same plane, whereas the
third nearest neighbor is on a different plane. Moreover, the

signs of these hopping terms are different, making BP a natural
platform to realize Dirac point engineering near the � point
[42], either by tuning the external bias or by applying strain to
the samples.

In summary, we have analyzed the electronic properties of
biased black phosphorus in the presence of a perpendicular
magnetic field. In the absence of an electric field, the external
magnetic field leads to a quantization of the electron and
hole bands into a set of equidistant Landau levels. This
behavior is similar to the discretization of the energy dispersion
in a 2DEG with a parabolic band. If we further apply
a perpendicular electric field to the sample, we obtain a
reduction of the band gap with the applied voltage. For a
critical value of the voltage, the gap completely closes, and
a pair of Dirac points appears in the �-X direction of the
Brillouin zone. This semiconductor-to-semimetal transition
is accompanied by a change in the topology of the system,
due to the generation of ±π Berry phases around the Dirac
points. We obtain a highly nontrivial LL spectrum in this
phase, with the coexistence of relativistic LLs, with a εn ∝√

nB quantization, with equidistant LLs at higher energies,
following the standard εn ∝ B(n + 1/2), characteristic of a
2DEG. The transition between these two regimes requires
goingthrough a Van Hove singularity (saddle point) in the band
dispersion, with the corresponding divergence in the DOS.
Finally, we numerically compute the Hall conductivity of the
system. The topological transition driven by the electric field
is reflected in a different quantization of the Hall conductivity,
which presents the characteristic σxy ∝ 2n behavior for low
bias voltages (insufficient to close the gap) and a relativistic
quantum Hall effect with σxy ∝ 4(n + 1/2) in the semimetallic
phase, due to the generation of a pair of Dirac cones. Although
we focus on the simplest case of bilayer BP, the results
presented here apply to any multilayer BP sample, with the
advantage that the gap decreases with the number of layers, and
therefore the semiconducting-to-semimetal transition would
be more easily reached for thicker samples. We note that
the electric-field-induced semimetallic phase in BP is likely
to present new broken-symmetry phases due to many-body
effects, which are not included here. For example, it is
known that bilayer graphene, whose low-energy spectrum
reassembles that of biased semimetallic BP, suffers a nematic
phase transition driven by Coulomb interactions [48]. Similar
interaction-driven phase transitions might occur in BP and
will be the object of future studies. The phenomena discussed
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here could be observed by exposing a biased BP sample,
chemically doped from in situ deposition of adatoms [16],
to a strong quantizing magnetic field or by applying external
strain (compression) to the samples [23]. These techniques
have been shown to be appropriate routes to tune this mate-
rial from a moderate-gap semiconductor to a band-inverted
semimetal.
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