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Transport and optical properties of single- and bilayer black phosphorus with defects
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We study the electronic and optical properties of single- and bilayer black phosphorus with short- and long-range
defects by using the tight-binding propagation method. Both types of defect states are localized and induce a
strong scattering of conduction states, reducing significantly the charge carrier mobility. In contrast to properties
of pristine samples, the anisotropy of defect-induced optical excitations is suppressed due to the isotropic nature
of the defects. We also investigate the Landau level spectrum and magneto-optical conductivity and find that the
discrete Landau levels are sublinearly dependent on the magnetic field and energy level index, even at low defect
concentrations.
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I. INTRODUCTION

Black phosphorus (BP) is a layer material in which the
atomic layers are coupled by weak van der Waals interactions.
Few-layer BP is a new kind of two-dimensional (2D) material
that can be obtained by a mechanical exfoliation method from
BP films [1–6], a common fabricating method of producing 2D
materials. BP is a semiconductor with a layer-dependent direct
band gap, which is crucial for a number of applications such as
field-effect transistors [7–11]. The anisotropic optical response
of BP [3,7,9,12–15], which is not typical for other known 2D
materials, makes it an ideal material for a photon polarizer. On
the other hand, unlike graphene and transition-metal dichalco-
genides, which are chemically stable under ambient condi-
tions, BP samples are shown to be very sensitive to the environ-
ment [4,5,16–18]. This is due to the high reactivity of BP with
respect to air and might limit their application in real devices. In
this regard, the role of defects and impurities in BP represents
an important issue with theoretical and practical relevance.

In 2D materials, the scattering induced by short-range point
defects (like adsorbates in graphene and sulfur vacancies
in MoS2) are shown to be one of the main mechanisms
dominating the charge mobility [19–26]. The point defects
are the so-called resonant scatterers because they can provide
resonances (quasilocalized states) near the neutrality point (in
graphene [22,23]) or within the band gap (in the semiconduct-
ing transition-metal dichalcogenides such as MoS2 and WS2

[25,26]). The emergence of the midgap states due to point
defects in BP has been observed in several first-principles
calculations, such as single vacancy [27,28], substitutional
p dopants (Te, C) [27], oxygen bridge-type defects [29], and
absorption of organic molecules [30] or adatoms (Si, Ge, Au,
Ti, V) [31]. But it remains unclear what is the influence of the
resonant point defects to the transport and optical properties
of BP, because the first-principles calculations are limited
by the sample size that is computationally too expensive to
consider a large sample with many defects. Another typical
disorder in 2D materials is the long-range electron-hole
puddles [19–21], which are inhomogeneities of carrier density
and have been observed experimentally [19,32]. The origin of
electron-hole puddles could be charged impurities and defects
located on the substrate [33–35] or surface corrugations such
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as ripples and wrinkles [36,37]. Unlike the point defects, the
electron-hole puddles do not introduce strong resonances in the
spectrum and therefore are referred to as typical nonresonant
defects. In this paper, the study of disordered samples are
performed by using the tight-binding propagation method
(TBPM) [22,23,38,39], which is extremely efficient for
large-scale calculation of systems with more than millions of
atoms.

II. TIGHT-BINDING MODEL

The TB Hamiltonian for pristine BP is based on the GW

approximation and is given as follows [8]:

H =
∑

i

εini +
∑
i �=j

tij c
†
i cj +

∑
i �=j

t⊥ij c
†
i cj , (1)

where the summation runs over the lattice sites of single- or
bilayer BP, εi is the energy of the electron at site i, t

(⊥)
ij is

the intralayer (interlayer) hopping parameter between the ith
and j th sites, and c

†
i (cj ) is the creation (annihilation) operator

of electrons at site i(j ). The parameters tij , t⊥ij , and εi were
obtained on the basis of accurate ab initio calculations within
the G0W0 approximation by mapping the entire manifold
of sp states onto the minimal set (one site per P atom) of
relevant states near the band gap. Specifically, we use five
intralayer (t1 = −1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV,
t4 = −0.105 eV, t5 = −0.055 eV) and four interlayer
hoppings (t⊥1 = 0.295 eV, t⊥2 = 0.273 eV, t⊥3 = −1.151 eV,
t⊥4 = −0.091 eV), which is schematically shown in Fig. 1, and
an energy splitting of �ε = 1.0 eV between the nonequivalent
electrons in bilayer BP [8]. The resulting TB model accurately
describes the quasiparticle electron and hole bands of
single-layer and bilayer BP in the range of ∼0.3 eV beyond the
gap [8].

The energy dispersions E(kx,ky) can be obtained analyt-
ically by diagonalizing the TB Hamiltonian (see the band
structure plotted in Fig. 1 and detailed calculations in the
appendix). The anisotropy can be further identified directly
from the anisotropic Fermi velocities and effective masses
shown in Fig. 2. The Fermi velocity vα = 1

�

∂E
∂kα

and effective

mass mα = �
2/ ∂2E

∂k2
α

are calculated from the energy dispersion
relations (see details in the appendix). The velocity of an
electron (hole) along the armchair direction is much larger
than the value along the zigzag direction, with both linear
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FIG. 1. (Color online) (top left) Schematic representation of the atomic structure and hopping parameters of the TB model of BP. (top
right) Top view of the atomic structure; the red dot represents a point defect, and the blue dot represents a long-range defect at the center of the
projected honeycomb lattice on the surface. (bottom left) Three-dimensional contour plot of the lowest valence and conduction bands. (bottom
right) Lowest valence and conduction bands along armchair (solid lines) and zigzag (dashed lines) directions.

FIG. 2. (Color online) (top) Electron and hole velocities in single-layer BP as a function of wave vector along armchair (red solid line) and
zigzag (black dashed line) directions. (bottom) Effective mass along armchair (Y ) and zigzag (X) directions. The wave vector k is in units of
1/a, where a ≈ 2.216 Å is the atomic distance between two nearest neighbors.

115436-2



TRANSPORT AND OPTICAL PROPERTIES OF SINGLE- . . . PHYSICAL REVIEW B 91, 115436 (2015)

k-dependent velocities around the � point (k = 0). This is
different from the Dirac fermion in graphene which travels
with constant velocity vF � c/300, where c is the speed of
light in vacuum. The effective masses at the � point along
the armchair direction are mv

y = 0.184me for hole, and mc
y =

0.167me for electron. Here, me is the free electron mass. The
effective masses along the zigzag direction are much heavier:
mv

x = 1.143me for hole and mc
x = 0.849me for electron.

III. TIGHT-BINDING PROPAGATION METHOD

The electronic and optical properties of single- and bilayer
BP are calculated by using the TBPM [22,23,39,40], in which
the initial state |ϕ〉 is chosen as a random superposition of
all sites over the whole space which covers all the energy
eigenstates [23,40] |ϕ〉 = ∑

i ai |i〉,where ai are random
complex numbers normalized as

∑
i |ai |2 = 1, and |i〉

represents a basis state at site i. The density of states can be
obtained by Fourier transformation of the overlap between the
time-evolved state |ϕ(t)〉 ≡ e−iHt |ϕ〉 and the initial state |ϕ〉 as
[23,40]

ρ (ε) = 1

2π

∫ ∞

−∞
eiεt 〈ϕ|ϕ (t)〉 dt. (2)

Here we use units such that � = 1. The time-evolution
operator e−iHt is calculated numerically by using the
Chebyshev polynomial algorithm, which is extremely effi-
cient for a TB Hamiltonian H which is a sparse matrix.
Within the TBPM, the optical conductivity (omitting the Drude
contribution at ω = 0) is calculated by using the Kubo formula
[23,42]

σαβ (ω) = lim
ε→0+

e−β̃ω − 1

ω�

∫ ∞

0
e−εt sin ωt

× 2Im〈ϕ|f (H) Jα (t) [1 − f (H)] Jβ |ϕ〉dt, (3)

where β̃ = 1/kBT is the inverse temperature, � is the sample
area, f (H) = 1/[eβ̃(H−μ) + 1] is the Fermi–Dirac distribution
operator, and the time-dependent current operator in the α

(=x or y) direction is defined as Jα(t) = eiHt Jαe−iHt .
The optical conductivity at an arbitrary direction is

σθ (ω) = σxx (ω) cos2 θ + σyy (ω) sin2 θ, (4)

where θ is the angle between the polarized direction and x axis.
Equation (4) can be derived from the Kubo formula by using
the relation of the current operator Jθ = Jx cos θ + Jy sin θ .

The reflection and transmission of a polarized light through
a BP film can be solved by using the Maxwell equations
with a conducting layer. For the case of normal incidence,
the reflectivity can be expressed as [41]

rθ (ω) = −ε0c(
√

ε2 − √
ε1) + σθ (ω)

ε0c(
√

ε2 + √
ε1) + σθ (ω)

, (5)

where ε0 is the permittivity of vacuum, ε1 and ε2 the relative
permittivity of two media on the two sides of BP film,
and c is the speed of light. The reflection and transmission
probabilities are given by R ≈ |r|2 and T ≈ |1 + r|2√ε2/ε1,
and the absorption coefficient is α = 1 − R − T . The ab-
sorption coefficient of BP films can be obtained directly
from optical measurements, such as Fourier transform infrared

spectroscopy (FTIS)[3,13]. In this work, we show the results
with ε1 = ε2 = 1 in order to ignore the influence of the
dielectric substrate.

The dc conductivity at energy E = ε is calculated by using
the Kubo formula at ω → 0 [23,42]

σαα = lim
τ→∞σαα (τ )

= lim
τ→∞

ρ (ε)

�

∫ τ

0
dtRe[e−iεt 〈ϕ|JαeiHt Jα|ε〉], (6)

where |ε〉 is the normalized quasi-eigenstate [23,38,39]. The
semiclassic dc conductivity σsc without considering the effect
of Anderson localization is defined as the maximum of σαα(τ )
obtained from the integral in Eq. (6). The measured field-effect
carrier mobility is related to the semiclassic dc conductivity
as μ(E) = σsc(E)/ene(E), where the carrier density ne(E) is
obtained from the integral of density of states via ne(E) =∫ E

0 ρ(ε)dε.
We use periodic boundary condition in our calculations,

and the system size is fixed as 4096 × 4096 for single-layer
BP and 2048 × 2048 for bilayer BP.

IV. MODEL OF DEFECTS

In the employed TB model, the point defects are modeled
by elimination of atoms randomly over the whole sample,
which can be viewed as phosphorus single vacancies, chemical
adsorbates such as covalently bonded adatoms or admolecules,
or substitution of other types of atoms which prevent the
electronic hopping to their neighbors [19–26]. The amount
of point defects is described by nx , which is the probability for
a single defect to appear at one lattice site. The electron-hole
puddles, in which the spatial charge inhomogeneity leads to
a local change of onsite potentials, can be represented as a
correlated Gaussian potential in the TB model [24,38,43]. The
value of the potential at site i follows

vi =
Nv

imp∑
k=1

Uk exp

(
−|ri − rk|2

2d2

)
, (7)

where Nv
imp is the number of the Gaussian centers, rk is

the position of the kth Gaussian center, which are chosen
to be randomly distributed over the centers of the projected
lattice on the surface, Uk is the amplitude of the potential at
the Gaussian center, which is uniformly random in the range
[−�,�], and d is interpreted as the effective potential radius.
The typical values of d used in our model are � = 5 eV
and d = 5a for electron-hole puddles [24,38]. Similarly, the
amount of electron-hole puddles is measured by nc, which is
the probability for a Gaussian potential to appear.

In order to investigate the influence of the defects on the
electronic structure of BP, we calculate the density of states
(DOS) of samples with randomly distributed point defects
or Gaussian potentials. As we expect, the presence of point
defects leads to midgap states within the energy band gap,
which can be identified by the sharp peaks in the DOS shown
in Figs. 3(a) and 3(b), where the number of defect states is
proportional to the concentration of point defects [23,26].
Similar midgap states appear in the first-principles calculations
of BP with different types of point defects [27–31]. On the
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FIG. 3. (Color online) Density of states of single-layer (left columns) and bilayer (right columns) with point defects (upper rows) or
electron-hole puddles (bottom rows). The value nx(nc) = 0.1% corresponds to defect a concentration of 2.98 (1.49) × 1012 per cm2.

other hand, the presence of electron-hole puddles does not
introduce any resonant states [see Figs. 3(c) and 3(d)]. Instead,
there is a uniform enhancement of the DOS within the gap due
to the random distribution of positive and negative potentials,
whereas the increased amplitude is proportional to the number
(concentration) of potential puddles.

V. TRANSPORT PROPERTIES

The calculations of transport properties by using the Kubo
formula show that for both point defects and electron-hole

puddles, the impurity states within the band gap are insulating
states (see Fig. 4). This is due to the Anderson localization
in disordered 2D systems [44,45], and the result is not
sensitive to the defect concentration. On the other hand,
the dc conductivities in the valence and conduction bands
decrease monotonically as the defect concentration increases.
This is consistent with the qualitative analysis by using the T

matrix [26,46]. For example, point defects in our model are
represented as impurities with infinite onsite potential, and the
scattering by these impurities leads to T (E) → −1/g0(E),
where g0(E) is the local unperturbed Green’s function.

FIG. 4. (Color online) Transport properties of single- and bilayer with defects. (top) dc conductivity as a function of doping energy. (bottom)
carrier mobility as a function of carrier density.
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For a semiconductor with electron-hole asymmetry like BP,
the density of states follows approximately N0(E) = Dc�

(E − Ec) + Dv�(Ev − E), where Ec(v) is the energy at the
edge of conduction (valence) band. The local unperturbed
Green’s function is [26,46]

g0 (E) = Dc ln

∣∣∣∣ E − Ec

E − Wc

∣∣∣∣ + Dv ln

∣∣∣∣E + Wv

E − Ev

∣∣∣∣ , (8)

where Wc(v) is the width of the conduction (valence) bands.
The dc conductivity is proportional to the inverse of the defect
concentration nx , as it can be expressed as σ = (2e2/h)Eτ

where τ−1 = (2π/�)nx |T (E)|2N0(E) is the scattering rate in
terms of nx .

Furthermore, the carrier-density dependence of the mo-
bility shows different electron-hole asymmetry in single-
and bilayers. The electron mobility is higher than the hole
mobility in single-layer material, but it is opposite in the
bilayer material. For example, for single layer with a defect
concentration nx = 0.02%, the electron mobility along the
armchair direction is about 1200 cm2 V−1 s−1 at a carrier
density ne = 5 × 1012 cm2, which is larger than the hole
mobility (700 cm2 V−1 s−1) at the same order of carrier density.
The asymmetry of the mobility becomes more obvious with
increased number of defects. For the same carrier density

considered above, when the defect concentration increases
to nx = 0.1%, the mobility drops to 700 cm2 V−1 s−1 for
electrons and less than 50 cm2 V−1 s−1 for holes. On the
contrary, for bilayer with nx = 0.1%, the electron mobility
is about 300 cm2 V−1 s−1 at the carrier density ne = 5 ×
1012 cm2, much smaller than the corresponding hole mobility
(800 cm2 V−1 s−1). The different electron and hole mobility
suggests that single layer is more suitable for the application
as an n-doped field-effect transistor, while bilayer is better as
a p-doped field-effect transistor. The drain current modulation
of n-doped single layer and p-doped bilayer can reach the
experimental observed value (∼105 in Ref. [1]) even with a
defect concentration nx(nc) = 0.1%.

VI. OPTICAL PROPERTIES

Further calculations of the optical conductivity show that
there will be extra excitations below the pristine optical gap
along both armchair and zigzag directions (see Fig. 5), due
to the presence of defect states. Using the presence of point
defects as an example, for single layer, the excitations between
the midgap states at E ≈ −0.2 eV and the states at the
conduction band edge (E ≈ 0.3 eV) reduce the optical gap
to 0.5 eV, much smaller than the value (1.4 eV) in the pristine
sample. For bilayer, there are two groups of defect states,

FIG. 5. (Color online) Optical conductivity as (a)–(d) a function of energy and optical absorption and (e)–(l) as a function of polarized
angle for suspended single- and bilayer BP with defects. The energies of the photon for single-layer are (e), (f) 1.4 eV and (i), (j) 1.78 eV,
and for bilayer are (j), (k) 0.98 eV and (h), (l) 1.36 eV. The black lines are the results for pristine samples, and the colored lines are the
results for disordered samples with different concentrations of defects. Throughout this work, we fix the temperature to T = 300 K and the
chemical potential to μF = 0 for the optical conductivity and normalize the conductivity to σ0 = πe2/2h, the universal optical conductivity of
single-layer graphene in the visible-light region.
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e.g., one sharp peak at E ≈ 0.02 eV and another broader
peak at E ≈ 0.48 eV [Fig. 3(b)]. The reduced optical gap
(∼0.52 eV) is due to the excitations between the valence band
edge (−0.5 eV) and the conduction peak at E ≈ 0.02 eV.
Another effect due to the appearance of the defects is the
smearing of the optical peaks along the armchair direction,
i.e., the peak at ω ≈ 1.5 eV for single- and ω ≈ 1.2 eV for
bilayer as can be seen from Fig. 5. It is important to note that,
although there are changes of the optical conductivities along
both armchair and zigzag directions, the optical spectrum
has different anisotropy below and above the band gap. The
angle-dependent absorption coefficients of linearly polarized
light in Fig. 5 show that the anisotropy remains unchanged for
photons with energy higher than the gap width, but becomes
much weaker within the gap. That is, in the presence of
defects, the transport along the armchair direction is still much
stronger than the zigzag direction above the gap but becomes
comparable within the gap. The difference of the anisotropy is
more clear in the case of single layer.

The influence of defects on the anisotropy of optical
properties can be explained by the isotropic nature of the defect
Hamiltonian. A point-like resonant defect is equivalent to a sin-
gle lattice site with strong on-site potential or out-of-plane hop-
ping, and for a nonresonant defect with a real-space Gaussian
profile, the value of the potential only depends on the relative
distance to the Gaussian center. That is, the extra Hamiltonian
terms introduced by both types of defects are isotropic.
Therefore, the optical excitations involving the defect states
become less anisotropic compared to excitations in pristine
BP. Furthermore, because the new excitation is proportional to
the number of defect states, we expect that (1) the increase of
the defect concentration will enhance the excitation below the
optical gap, and (2) the profile of the angle-dependent optical
spectroscopy should be robust against the defect concentration,
because the defect states are localized and separated according
to the transport calculations. These conclusions are confirmed
by the optical spectroscopy shown in Fig. 5.

The restrain of the anisotropy obtained in our calculations
is similar to that observed in recent excitation measurements of
few-layer BP films [3]. The difference is that the experiment
is performed on a BP film with a much smaller band gap
(about 0.3 eV) comparing to these in single-layer (1.5 eV) and
bilayer (1.2 eV). As the band gap in multilayer BP is highly
reduced, the impurity band(s) due to the presence of defects
could have overlaps with the pristine bands, which will restrain
the anisotropy even above the optical gap. We leave out the
study of disordered multilayer BP for future work with a further
development of TB models.

VII. LANDAU LEVEL SPECTRUM AND
MAGNETO-OPTICAL SPECTROSCOPY

In the presence of a perpendicular magnetic field B, the
quantization of the energy levels leads to separated Landau
levels (LLs). The low-energy physics of single-layer BPs can
be described by an effective k · p model [47,48], and the LLs
are [49]

Ekp
n,s = Es + seB�

me

(
n + 1

2

)
ws, (9)

FIG. 6. (Color online) The energy dependence of the anisotropic
effective masses of single-layer BP in the TB model.

where s = ±1 denotes the conduction and valence bands,
E+/− = Ec/v is the energy at the conduction and valence
edge, n is the energy index and w+/− = me/(mc/v

x m
c/v
y )1/2

(mc/v
x and m

c/v
y are anisotropic effective masses at the �

point). However, because the k · p model does not capture
the energy-dependence of the effective masses (see the results
obtained from the TB calculations in Fig. 6), Eq. (9) is not
valid at high magnetic field. In fact, as can be seen from Fig. 7,
the Landau spectrum obtained from the TB calculations show
that the LLs follow a sublinear dependence on the magnetic

FIG. 7. (Color online) Landau level spectrum of single-layer and
bilayer BP in high magnetic field. The red dashed lines are the lowest
twenty LLs calculated from Eq. (10).
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FIG. 8. (Color online) DOS and magneto-optical spectrum of disordered single-layer and bilayer BP with perpendicular magnetic field
B = 50 T.

field and energy index n, which can be fit as

En,s = Es + seB�

me

[(
n + 1

2

)
ws − δsBnps

]
, (10)

where E+(−) = 0.34 eV (−1.18 eV), w+(−) = 2.656 (2.181),
δ+(−) = 0.0005 (0.0004), and p+/− = 1.8 for single-layer
and E+(−) = 0.6815 eV (−0.513 eV), w+(−) = 2.14 (2.67),
δ+(−) = 0.0004 (0.000 85), and p+(−) = 1.8 (1.73) for bi-
layer. In the TB calculations, the hopping parameter tmn

between two sites is replaced by a Peierls substitution as
tmn exp[ie

∫ n

m
A · dl], and we choose the Landau gauge in

which the vector potential is A = (−By,0,0). In the presence
of either point defects or electron-hole puddles, the LL peaks in
the DOS are smeared and suppressed, depending on the defect
concentration. The broadening of peaks in the DOS also lead to
energy shifts of the LLs; however, for a small concentration of
defects, the shifted LLs still follow the sublinear dependence
of Eq. (10), but with a smaller δs . The Landau quantization of
energy levels are also observed in the discrete magneto-optical
spectrum shown in Fig. 8. The broadening and energy shifts of
the optical peaks due to the presence of defects are consistent
with the DOS. Here we only present the results along the
armchair direction, because the magneto-optical conductivity
along the zigzag direction is three-orders of magnitude smaller
due to the anisotropy of BP.

VIII. CONCLUSION

In summary, we show that the intrinsic anisotropy of single-
and bilayer BP is robust to the presence of defects. The
emergence of defect states with short-range point defects is
identified by sharp peaks in the DOS within the band gap,

which is different from the uniform increase of states with
the long-range electron-hole puddles. For both short- and
long-range defects, the defect states are insulating due to the
Anderson localization in disordered 2D systems, but they cause
extra excitations within the optical gap. The dc conductivity
as well as carrier mobility beyond the gap are significantly
reduced due to the scattering from the defects. The angle-
dependent absorption coefficients of linearly polarized light
show that the anisotropy above the band gap is robust against
the disorder, but the anisotropy of the new excitations involving
the defect states is suppressed because of the isotropic nature
of the defects. By fitting the numerical results of the DOS
obtained in the TB model, we find a sublinear dependence of
LLs on the magnetic field and level index, even at low defect
concentrations.
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APPENDIX

The unit cell of single-layer BP contains four atoms, and
the TB Hamiltonian can be represented as [8,48]

H =

⎛
⎜⎜⎜⎜⎝

0 t2ϕ2 + t5ϕ5 t4ϕ4 t1ϕ1 + t3ϕ3

t2ϕ
∗
2 + t5ϕ

∗
5 0 t1ϕ

∗
1 + t3ϕ

∗
3 t4ϕ

∗
4

t4ϕ
∗
4 t1ϕ1 + t3ϕ3 0 t2ϕ2 + t5ϕ5

t1ϕ
∗
1 + t3ϕ

∗
3 t4ϕ4 t2ϕ

∗
2 + t5ϕ

∗
5 0

⎞
⎟⎟⎟⎟⎠ , (A1)
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where the phase terms ϕi are defined as

ϕ1 = 2eidky cos (ckx) , (A2)

ϕ2 = e−ibky , (A3)

ϕ3 = 2e−i(2b+d)ky cos (ckx) , (A4)

ϕ4 = 4 cos (ckx) cos ((b + d)ky), (A5)

ϕ5 = ei(b+2d)ky , (A6)

and the constants c = a sin θ , d = a cos θ , θ = 48.395◦, a ≈
2.216 Å, and b ≈ 0.716 Å are the atomic distance of two

nearest neighbors projected onto the surface plane. The four
eigenvalues of the TB Hamiltonian matrix can be represented
as

E1(kx,ky) = A(kx,ky) − B(kx,ky), (A7)

E2(kx,ky) = A(kx,ky) + B(kx,ky), (A8)

E3(kx,ky) = −A(kx,ky) − C(kx,ky), (A9)

E4(kx,ky) = −A(kx,ky) + C(kx,ky), (A10)

where A(kx,ky), B(kx,ky), and C(kx,ky) are

A(kx,ky) = 4t4 cos (ckx) cos ((b + d)ky),

B(kx,ky) = [
2 cos (2ckx)

{
2t1t3 cos[2 (b + d) ky] + t2

1 + t2
3

} + 4 cos (ckx) [t2 (t1 + t3) + t1t5] cos ((b + d)ky)

+ t3t5 cos (3 (b + d) ky) + 2 (2t1t3 + t2t5) cos (2 (b + d) ky) + 2t2
1 + t2

2 + 2t2
3 + t2

5

]1/2
,

C(kx,ky) = [ − 4t3t5 cos (ckx) cos (3 (b + d) ky) + 2 cos (2 (b + d) ky) [2t1t3 cos (2ckx) + 2t1t3 + t2t5]

− 4 [t2t3 + t1 (t2 + t5)] cos (ckx) cos ((b + d)ky) + 2
(
t2
1 + t2

3

)
cos (2ckx) + 2t2

1 + t2
2 + 2t2

3 + t2
5

]1/2
. (A11)

E1(kx,ky) and E2(kx,ky) are the lowest valence (Ev ) and conduction (Ec) bands fit to GW calculations and plotted in Fig. 1.
The Fermi velocity can be obtained via vα = 1

�

∂E
∂kα

, and the electron and hole velocities along the armchair (Y ) and zigzag
(X) directions are

vv
x = A1 − B1/D, (A12)

vv
y = A2 − B2/D, (A13)

vc
x = A1 + B1/D, (A14)

vc
y = A2 + B2/D, (A15)

where

A1 = −4ct4 sin (ckx) cos ((b + d)ky),

A2 = −4t4 (b + d) cos (ckx) sin ((b + d)ky),

B1 = −4c sin (2ckx)
[
2t3t1 cos (2 (b + d) ky) + t2

1 + t2
3

]
−4c sin (ckx) {t3t5 cos (3 (b + d) ky) + [t2 (t1 + t3) + t1t5] cos ((b + d)ky)},

B2 = −8t1t3 (b + d) cos (2ckx) sin (2 (b + d) ky) − 4 (2t1t3 + t2t5) (b + d) sin (2 (b + d) ky)

+ 4 cos (ckx) {−3t3t5 (b + d) sin (3 (b + d) ky) − [t2 (t1 + t3) + t1t5] (b + d) sin ((b + d)ky)},
D = 2

[
2 cos (2ckx)

[
2t3t1 cos (2 (b + d) ky) + t2

1 + t2
3

]
+4 cos (ckx) {t3t5 cos (3 (b + d) ky) + [t2 (t1 + t3) + t1t5] cos ((b + d)ky)}
+2 (2t1t3 + t2t5) cos (2 (b + d) ky) + 2t2

1 + t2
2 + 2t2

3 + t2
5

]1/2.

The calculation of effective mass is straightforward via 1/mα = ∂2E
∂k2

α
/�

2, and for kx = ky = 0 , we have

mv
x = −4c2t4 − A3/F, (A16)

mv
y = −4t4 (b + d)2 − A4/F, (A17)

mc
x = −4c2t4 + A3/F, (A18)

mc
y = −4t4 (b + d)2 + A4/F, (A19)
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where

A3 = −8c2 (
t2
1 + 2t3t1 + t2

3

) − 4c2 [t2 (t1 + t3) + t1t5 + t3t5] ,

A4 = −16t1t3 (b + d)2 − 8 (2t1t3 + t2t5) (b + d)2 + 4{[t2 (t1 + t3) + t1t5] (−b − d) (b + d) − 9t3t5 (b + d)2},
F = 2

√
2t2

1 + t2
2 + 2t2

3 + t2
5 + 2

(
t2
1 + 2t3t1 + t2

3

) + 2 (2t1t3 + t2t5) + 4(t2 (t1 + t3) + t1t5 + t3t5).

By using the parameters of single-layer BP, the effective masses at � point are

mv
x = −1.143me, (A20)

mv
y = −0.184me, (A21)

mc
x = 0.849me, (A22)

mc
y = 0.167me. (A23)
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