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Quantum decoherence scaling with bath size:
Importance of dynamics, connectivity, and randomness
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We consider the decoherence of a quantum system S coupled to a quantum environment E. For states chosen
uniformly at random from the unit hypersphere in the Hilbert space of the closed system S + E we derive a
scaling relationship for the sum of the off-diagonal elements of the reduced density matrix of S as a function of
the size DE of the Hilbert space of E. This sum decreases as 1/

√
DE as long as DE � 1. We test this scaling

prediction by performing large-scale simulations which solve the time-dependent Schrödinger equation for a
ring of spin-1/2 particles, four of them belonging to S and the others to E, and for this ring with small world
bonds added in E and/or between S and E. The spin-1/2 particles experience nearest-neighbor interactions that
are identical for the interactions within S and random for the interactions within E and between S and E, or that
are all identical. Provided that the time evolution drives the whole system from the initial state toward a scaling
state, a state which has similar properties as states belonging to the class of quantum states for which we derived
the scaling relationship, the scaling prediction holds. We examine various interaction parameters and initial states
for our model system to find whether or not the time evolution reaches the class of states that have the scaling
property. For the homogeneous ring we find that the evolution for select initial states does not reach these scaling
states. This conclusion is not modified if we add some homogeneous random connections. For a ring we find that
some randomness in the interaction parameters is required so that most initial configurations are driven toward
the scaling state. Furthermore, if the amount of randomness is small the time required to reach the scaling states
may be very large. For the case of all random interactions in E the ring is driven toward the scaling state. Adding
small world bonds between S and E with random interaction strengths may decrease the time required to reach
the scaling state or may prevent the scaling state from being reached. For the latter case we show that increasing
the complexity of the environment by adding extra connections within the environment suffices to observe the
predicted scaling behavior.
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I. INTRODUCTION

Decoherence of a quantum system S interacting with a
quantum environment E is of importance for two reasons.
First, decoherence of S is the primary requirement for S to
relax to a state described by a canonical ensemble at a certain
temperature [1]. Second, decoherence is arguably the largest
impediment for practical, realizable quantum computers [2].

The large interest in technological areas like spintronics,
quantum computing, and quantum information processing

have stimulated the theoretical research of quantum dynamics
in open and closed interacting systems. Besides this more
application-driven interest there persists the fundamental and
still unanswered question under which conditions a finite
quantum system reaches thermal equilibrium and how this
can be derived from dynamical laws.

On the one hand there exists a variety of studies exploring
the microcanonical thermalization in an isolated quantum
system [3–6]. On the other hand there exist various studies
investigating the process of canonical thermalization of a
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system coupled to a (much) larger system [3,7–13] and of
two finite identical quantum systems prepared at different
temperatures [14,15].

In previous work [16,17], we numerically demonstrated
that a quantum system interacting with an environment at
high temperature relaxes to a state described by the canonical
ensemble. In this paper we focus on investigating the dynamic
properties of the decoherence of a quantum system S, being
a subsystem of the whole system S + E. We do this both
with a theoretical prediction and by simulating the dynamics
of a relatively large system S + E of spin-1/2 particles using
a time-dependent Schrödinger equation (TDSE) solver [18].
In particular, we investigate the scaling of the degree of
decoherence of S with the size of E, keeping the size of S fixed.
Based on similar arguments as given in Ref. [19], we find that
the degree of decoherence of S decreases as 1/

√
DE , where

DE is the dimension of the Hilbert space of the environment
if the state of the whole system is chosen uniformly at random
from the unit hypersphere in the Hilbert space. In this paper,
we denote states chosen uniformly at random from the unit
hypersphere in the Hilbert space of the whole system by “X”
and of the environment by “Y .”

We also address the question under what circumstances the
whole system evolves to a state which has the same degree of
decoherence as a state “X.” In particular we study the
case in which the initial state of S + E is a direct product
of the state |↑↓↑↓〉 of S and a state “Y ” of E. If the initial state
of the whole system S + E is slightly different from a given
state “X,” the dynamics may drive the whole system into a state
which is very different from the given state “X,” but which is of
a similar type. We investigate through our simulations when
the dynamics plays an important role in the decoherence in
that it can drive S + E to a state “X” by introducing small
world bond connections in E and/or between S and E and
by introducing randomness in the interaction strengths of the
environment.

The paper is organized as follows. In Sec. II our theo-
retical results for the scaling of the decoherence of S are
presented, together with details of the one-dimensional ring
of spin-1/2 particles which we simulate to better under-
stand the scaling prediction. Sections III–V contain results
for the one-dimensional rings under study. In particular we
look at the effect of adding additional bonds [small world
bonds (SWBs)] between the system and environment spins
and/or between environment spins only (Sec. IV) and of
randomness in the interaction strengths of the Hamiltonian of
the environment (Sec. V). Section VI contains our conclusions
and a discussion of our results.

II. THEORY, MODEL, AND METHODS

The time evolution of a closed quantum system is governed
by the time-dependent Schrödinger equation (TDSE) [20,21].
If the initial density matrix of an isolated quantum system
is nondiagonal then, according to the time evolution dictated
by the TDSE, it remains nondiagonal. Therefore, in order to
decohere the system S, it is necessary to have the system S

interact with an environment E, also called a heat bath or
spin bath if the environment is composed of spins. Thus, the

Hamiltonian of the whole system S + E takes the form,

H = HS + HE + HSE, (1)

where HS and HE are the system and environment Hamilto-
nian, respectively, and HSE describes the interaction between
the system and environment. In what follows, we first describe
the general theory that leads to the scaling of the decoherence
of the system S with the size of E and S. We then describe in
detail the spin-1/2 Hamiltonians we have simulated to provide
a case study for this scaling.

A. Time evolution

A pure state of the whole system S + E evolves in time
according to (in units of h̄ = 1)

|�(t)〉 = e−itH |�(0)〉 =
DS∑
i=1

DE∑
p=1

c(i,p,t)|i,p〉, (2)

where the set of states {|i,p〉} denotes a complete set of
orthonormal states in some chosen basis, and DS and DE

are the dimensions of the Hilbert spaces of the system and
the environment, respectively. We assume that DS and DE are
both finite.

The spin Hamiltonian H models a system with NS spin-1/2
particles and an environment with NE spin-1/2 particles.
Thus, DS = 2NS and DE = 2NE . The whole system S + E

contains N = NS + NE spin-1/2 particles and the dimension
of its Hilbert space is D = DSDE . In our simulations we use
the spin-up–spin-down basis and use units such that h̄ = 1
(hence, all quantities are dimensionless). Numerically, the
real-time propagation by e−itH is carried out by means of
the Chebyshev polynomial algorithm [22–25], thereby solving
the TDSE for the whole system starting from the initial state
|�(0)〉. This algorithm yields results that are very accurate
(close to machine precision), independent of the time step
used [18].

B. Computational aspects

Computer memory and CPU time severely limit the sizes
of the quantum systems that can be simulated. The required
CPU time is mainly determined by the number of operations
to be performed on the spin-1/2 particles. The CPU time
does not put a hard limit on the simulation. However, the
memory of the computer does severely limit which system
sizes can be calculated. The state |�〉 of an N -spin-1/2
system is represented by a complex-valued vector of length
D = 2N . In view of the potentially large number of arithmetic
operations, it is advisable to use 13–15 digit floating-point
arithmetic (corresponding to 8 bytes for a real number). Thus,
to represent a state of the quantum system of N spin-1/2
particles on a conventional digital computer, we need a least
2N+4 bytes. Hence, the amount of memory that is required to
simulate a quantum system with N spin-1/2 particles increases
exponentially with N . For example, for N = 24 (N = 36) we
need at least 256 MB (1 TB) of memory to store a single
arbitrary state |�〉. In practice we need three vectors, memory
for communication buffers, local variables, and the code
itself.
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The elementary operations performed by the computational
kernel are of the form |�〉 ← U |�〉 where U is a sparse
unitary matrix with a very complicated structure (relative to the
computational basis). Inherent to the problem at hand is that
each operation U affects all elements of the state vector |�〉 in
a nontrivial manner. This translates into a complicated scheme
for accessing memory, which in turn requires a sophisticated
MPI communication scheme [26].

C. Reduced density matrix

The state of the quantum system S is described by the
reduced density matrix

ρ̂(t) ≡ TrEρ(t), (3)

where ρ(t) is the density matrix of the whole system S + E at
time t and TrE denotes the trace over the degrees of freedom
of the environment. In terms of the expansion coefficients
c(i,p,t), the matrix element (i,j ) of the reduced density matrix
reads

ρ̂ij (t) = TrE

DE∑
p=1

DE∑
q=1

c∗(i,q,t)c(j,p,t)|j,p〉〈i,q|

=
DE∑
p=1

c∗(i,p,t)c(j,p,t). (4)

We characterize the degree of decoherence of the system
by

σ (t) =
√√√√DS−1∑

i=1

DS∑
j=i+1

|ρ̃ij (t)|2, (5)

where ρ̃ij (t) is the matrix element (i,j ) of the reduced density
matrix ρ̃ in the representation that diagonalizes HS . Clearly,
σ (t) is a global measure for the size of the off-diagonal terms of
the reduced density matrix in the representation that diagonal-
izes HS . If σ (t) = 0 the system is in a state of full decoherence
(relative to the representation that diagonalizes HS).

D. Scaling property of σ

We can prove a scaling property of σ by assuming that
the final state of the whole system is a state “X,” a state that
is picked uniformly at random from the unit hypersphere in
the Hilbert space. The wave function of the whole system
reads

|�〉 =
DS∑
i=1

DE∑
p=1

Ci,p

∣∣E(S)
i

〉∣∣E(E)
p

〉
, (6)

where {|E(S)
i 〉}({|E(E)

p 〉}) is the set of eigenvectors of HS (HE),
and the real and imaginary parts of Ci,p are real random
variables. The derivation of the scaling behavior follows
Ref. [19]. In particular Eqs. (A8), (A12), and (A23) of Ref. [19]
are used. We introduce the following shorthand notation
for the sum over the off-diagonal elements,

∑DS

i �=j κij =∑DS

i=1

∑DS

j=1(1 − δij )κij for any κij , where δij is the Kronecker

delta function. The expectation value is given by

E(2σ 2) = E

⎛⎜⎝ DS∑
i �=j

∣∣∣∣∣∣
DE∑
p=1

C∗
i,pCj,p

∣∣∣∣∣∣
2
⎞⎟⎠

=
DS∑
i �=j

DE∑
p=1,p′=1

E(C∗
i,pCj,pCi,p′C∗

j,p′ )

=
DS∑
i �=j

DE∑
p=1,p′=1

[(1 − δp,p′ )E(C∗
i,pCj,pCi,p′C∗

j,p′ )

+ δp,p′E(C∗
i,pCj,pCi,p′C∗

j,p′ )]

=
DS∑
i �=j

DE∑
p=1

E(|Ci,p|2|Cj,p|2)

=
DS∑
i �=j

DE∑
p=1

1

DSDE(DSDE + 1)
= DS − 1

DSDE + 1

=
1 − 1

DS

DE + 1
DS

, (7)

where E(·) denotes the expectation value with respect to
the probability distribution of the random variables Ci,p.
Equation (7) does not require any condition on the Hamiltonian
Eq. (1). For example, if HE is composed of two or more
environments that do not couple to each other, but only interact
with the system, in Eq. (7) DE is the product of the sizes of
the Hilbert spaces of all the environments. In addition, Eq. (7)
does not impose any requirement on the geometry.

From Eq. (7) it follows that for any fixed value of DS > 1
and DE � 1, σ scales as

σ ≈ 1√
2

√
E(2σ 2) = 1√

2

√
DS − 1

DSDE + 1
∼ 1√

2DE

. (8)

Therefore, if the size of the system S is fixed (which is the case
considered in this paper), σ decreases as 1/

√
DE for large DE .

Hence, for a spin-1/2 system σ should decrease as 2−NE/2 for
large NE .

For fixed DS > 1, it follows from Eq. (7) that the environ-
ment does not have to be very large for Eq. (8) to hold, which
is in agreement with Ref. [27]. Nevertheless, the existence of
an environment is crucial. If there is no environment, then σ

approaches to a constant (see Appendix A), even if the whole
system is initially in a state “X.”

E. Model and method

For testing the predicted scaling of Eq. (8) we simulate
systems of spin-1/2 particles. For studying the time evolution
of the whole system S + E, we consider a general quantum
spin-1/2 model defined by the Hamiltonian of Eq. (1)
where

HS = −
NS−1∑
i=1

NS∑
j=i+1

∑
α=x.y,z

J α
i,j S

α
i Sα

j , (9)
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FIG. 1. (Color online) An example of a spin system used in the
simulations. The NS = 4 system spin-1/2 particles are colored light
gray (cyan), and the NE = 18 environment spin-1/2 particles are
colored dark gray (red). The thin black segments show the connections
for a one-dimensional ring, which are the only bonds (interactions)
present in cases I and II (see text). The thick (green and white) bonds
show SWBs in HSE . This particular example shows a spin system
with K = 2, where K denotes the maximum number of subsystem
spins that are connected via SWBs with one environment spin (thick
white lines; see also Sec. IV). The medium thick (blue) bonds show
SWBs in HE .

HE = −
NE−1∑
i=1

NE∑
j=i+1

∑
α=x,y,z

�α
i,j I

α
i I α

j , (10)

HSE = −
NS∑
i=1

NE∑
j=1

∑
α=x,y,z

	α
i,j S

α
i I α

j . (11)

Here, S and I denote the spin-1/2 operators of the spins of
the system and the environment, respectively (we use units
such that h̄ and kB are one). The spin components Sα

i and
Iα
j are related to the Pauli spin matrices, for example, Sx

i

is a direct product of identity matrices and the Pauli spin
matrix 1

2σx = 1
2 ( 0 1

1 0 ) in position i of the direct product with
1 � i � NS .

For the geometry of the whole system, we focus on the
one-dimensional ring consisting of a system with NS = 4
spin-1/2 particles and an environment with NE spin-1/2
particles (see Fig. 1). Past simulations have shown that a
high connectivity spin-glass type of environment is extremely
efficient to decohere a system [16,28–30], so we may expect
that the one-dimensional ring is one of the most difficult
geometries to obtain decoherence in short times.

We assume that the spin-spin interaction strengths of the
system S are isotropic, J α

i,j = J , and that only the nearest-
neighbor interaction strengths �α

i,j and 	α
i,j are nonzero. Note

that for a ring there are only two bonds with strength 	α
i,j

connecting S and E. We distinguish two cases:
(1) Case I. The nonzero values of �α

i,j and 	α
i,j are

generated uniformly at random from the range [−�,�] and
[−	,	], respectively.

(2) Case II. All nonzero values of the model parameters are
identical, �α

i,j = J and 	α
i,j = J . This corresponds to a uni-

form isotropic Heisenberg model with interaction strength J .
We will see that these two cases show very different scaling
properties of the decoherence depending on the initial state.
We also investigate the effects of randomly adding small world

bonds (SWBs) between spins in the system and environment
and between spins in the environment (see Fig. 1).

The initial state of the whole system S + E is prepared in
two different ways, namely:

(1) “X.” We generate Gaussian random numbers
{a(j,p),b(j,p)} and set c(j,p,t = 0) = [a(j,p) +
ib(j,p)]/

√∑
j,p[a2(j,p) + b2(j,p)]. Clearly this procedure

generates a point on the hypersphere in the D-dimensional
Hilbert space. Alternatively, we generate points in the
hypercube by using uniform random numbers in the interval
[−1,1]. Our general conclusions do not depend on the
procedure used (results not shown).

(2) UDUDY . The initial state of the whole system is a
product state of the system and environment. In this paper
(NS = 4), we confine the discussion to the state UDUDY ,
which means that the first, second, third, and fourth spin are in
the up, down, up, and down state, respectively, and the state of
the remaining spins is a “Y ” state in the (D/24)-dimensional
Hilbert space. The “Y ” state of the environment is prepared in
the same way as the “X” state of the whole system.

III. SCALING ANALYSIS OF σ

All simulations are carried out for a system S consisting
of four spins (NS = 4) coupled to an environment E with the
number of spins NE ranging from 2 to 30. The interaction
strengths J α

i,i+1 with 1 � i � NS − 1 are always fixed to J =
−0.15. For case I all nonzero �α

i,j and 	α
i,j are randomly gen-

erated from the range [−0.2,0.2]. For case II all nonzero �α
i,j

and 	α
i,j are equal to J = −0.15 (isotropic Heisenberg model).

A. Verification of scaling: Cases I and II with “X”

We corroborate the scaling property of Eq. (8) by numeri-
cally simulating the quantum spin system [see Eqs. (9)–(11)].
If we choose the initial state of the whole system to be an “X”
state, then during the time evolution the whole system will
remain in the state “X.” Hence, the condition to derive Eq. (8)
are fulfilled. Figure 2 demonstrates that the numerical results
for both cases I and II agree with Eq. (8). In particular the insets
in Fig. 2 show that for both cases I and II, ln(2σ ) ≈ −NE/2,
and that σ scales as 1/

√
DE even if NE = 2 and NS = 4

(NE < NS).

B. Different initial conditions

We investigate the effects of the dynamics by preparing
the initial state of the whole system such that it is slightly
different from “X.” The initial state of the whole system is set
to UDUDY . In contrast to Fig. 2, we will see that the two cases
I and II behave differently.

1. Case I and UDUDY

In Fig. 3, we present the simulation results for case I,
the couplings in the Hamiltonians HE and HSE are chosen
uniformly at random. The size N = NE + 4 of the whole
system ranges from 6 to 34. An average over the long-time
stationary steady-state values of σ (t) still obeys the scaling
property of Eq. (8), showing that σ decreases as 1/

√
DE ,
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FIG. 2. Simulation results for σ (t) [see Eq. (5)] for case I (top)
and case II (bottom) for different sizes N = NE + 4 of the whole
system. The initial state of the whole system is “X” (see text). Curves
from top to bottom correspond to system sizes ranging from N = 6
to N = 34 in steps of 2. The insets show the time-averaged values
of σ (t) (pluses) as a function of the size NE of the environment,
confirming the theoretical prediction of Eq. (8) (solid line).

where DE = 2NE . If NE → ∞, σ → 0. This suggests that in
the thermodynamical limit the system S decoheres completely.

2. Case II and UDUDY

We consider the case in which the whole system is de-
scribed by the isotropic Heisenberg model (J α

i,i+1 = �α
i,i+1 =

	α
i,i+1 = J ). In Fig. 4 we present simulation results for

different system sizes N = NE + 4 ranging from 16 to 34.
From Fig. 4, it is seen that the behavior for case II is totally
different from that of case I (see Fig. 3). In particular, σ (t)
does not scale with the dimension of the environment. From
the present numerical results, we cannot make any conclusions
about the limit for large NE . However, if σ (t) approaches zero
as NE → ∞ (see the fifth column of Table I) it does so very
slowly.

C. Computational effort

In this paper, the largest number of spins that we simulated
is N = 34. Using the Chebyshev polynomial algorithm and

10-4

10-3

10-2

10-1

100

 0  1000  2000  3000  4000  5000  6000  7000  8000

σ(
t)

t

10-5

10-3

10-1

 2  10  20  30
NE

FIG. 3. Simulation results for σ (t) [see Eq. (5)] for case I for
different sizes N = NE + 4 of the whole system. The initial state of
the whole system is UDUDY (see text). Curves from top to bottom
correspond to system sizes ranging from N = 6 to N = 34 in steps
of 2. The inset shows the time-averaged values of σ (t) (pluses) as a
function of the size NE of the environment. The data obey the scaling
property of Eq. (8) (solid line).

a large time step (τ ≈ 10π ), the N = 34 simulation for the
bottom curves in Fig. 2 (up to a time t ≈ 600) took about
0.3 million core hours on 16384 BG/P (IBM Blue Gene P)
processors, using 1024 GB of memory. Similarly, it took about
4 million core hours to complete the N = 34 curve in Fig. 3
(up to a time t ≈ 8000).

D. Summary: Initial state dependence

For an initial state “X” of the whole system the scaling of
σ , as given by Eq. (8), works extremely well for both case I
and case II, as seen in Fig. 2. When the initial state is UDUDY ,
we can understand the very different behavior of cases I and II
(see Figs. 3 and 4) by considering the stationary states that are
obtained. Figure 5 shows that the final values of σ (t) for case

10-3

10-2

10-1

100

 0  200  400  600  800  1000  1200  1400

σ(
t)

t

10-3

10-2

10-1

12 18 24 30
NE

FIG. 4. Same as Fig. 3 for case II instead of case I. Curves from
top to bottom correspond to system sizes ranging from N = 16 to
N = 34 in steps of 2. The solid line in the inset is a guide to the
eyes.
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TABLE I. The time average of σ (t) in the stationary regime shown in Figs. 2–4.

Prediction Case I Case II

NE of Eq. (8) UDUDY “X” UDUDY “X”

2 3.397 × 10−1 3.416 × 10−1 3.375 × 10−1 3.334 × 10−1

4 1.708 × 10−1 1.746 × 10−1 1.727 × 10−1 1.711 × 10−1

6 8.554 × 10−2 8.834 × 10−2 8.536 × 10−2 8.492 × 10−2

8 4.279 × 10−2 4.598 × 10−2 4.282 × 10−2 4.265 × 10−2

10 2.139 × 10−2 2.286 × 10−2 2.153 × 10−2 2.121 × 10−2

12 1.070 × 10−2 1.149 × 10−2 1.071 × 10−2 1.254 × 10−2 1.061 × 10−2

14 5.349 × 10−3 5.795 × 10−3 5.357 × 10−3 6.756 × 10−3 5.346 × 10−3

16 2.674 × 10−3 2.866 × 10−3 2.678 × 10−3 3.997 × 10−3 2.663 × 10−3

18 1.337 × 10−3 1.430 × 10−3 1.349 × 10−3 2.694 × 10−3 1.343 × 10−3

20 6.686 × 10−4 7.065 × 10−4 6.736 × 10−4 2.204 × 10−3 6.641 × 10−4

22 3.343 × 10−4 3.542 × 10−4 3.352 × 10−4 1.909 × 10−3 3.347 × 10−4

24 1.672 × 10−4 1.766 × 10−4 1.674 × 10−4 1.722 × 10−3 1.658 × 10−4

26 8.358 × 10−5 9.005 × 10−5 8.368 × 10−5 1.599 × 10−3 8.283 × 10−5

28 4.179 × 10−5 4.551 × 10−5 4.151 × 10−5 1.481 × 10−3 4.176 × 10−5

30 2.089 × 10−5 2.338 × 10−5 2.107 × 10−5 1.379 × 10−3 2.104 × 10−5

I are very close for both initial states “X” and UDUDY . This
suggests that the final stationary state in case I has properties
similar to those of a state “X,” and hence case I obeys the
scaling property of Eq. (8) to a good approximation. The time-
averaged values of σ (t) in Figs. 2–4, denoted by σ , are listed
in Table I. From Table I, we see that the values of σ for case II
with an initial state UDUDY are very different from those with
an initial state “X,” and do not show the scaling property of
Eq. (8). Thus, the numerical results suggest that the initial state
and the randomness of the interaction strengths play a very
important role in the dynamical evolution of the decoherence
of a system coupled to an environment. In particular, for case
II, starting from a state “X” the time-averaged values of σ (t)
scale as σ ≈ 1/

√
DE , but such scaling is not observed for

starting from a state UDUDY .
From Table I, it is seen that the values of σ for case I

with the initial state UDUDY are always slightly larger than
those with the initial state “X.” Therefore, it is interesting to
examine the difference 	σ between the values of σ for the
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σ(
t)

t

FIG. 5. (Color online) Simulation results for σ (t) for case I for
N = 22 and NS = 4. Red solid line: the initial state is UDUDY (see
text); green dashed line: the initial state is “X” (see text).

initial states UDUDY and “X.” Figure 6 shows that 	σ for
case I (red pluses) also scales as 1/

√
DE (dotted line), except

for the first three data points, which is probably due to large
fluctuations in the calculations for these small system sizes.
Therefore, the dynamics of case I will drive the system to a state
“X” only when the environment approaches infinity. Figure 6
also shows that 	σ for case II (circles) is almost constant for
system sizes N ranging from 16 to 34. Hence, it is unlikely
that case II with the initial state UDUDY will decohere, even
if the simulations could be performed for much longer times
and for larger system sizes.

IV. CONNECTIVITY: RING WITH SMALL WORLD BONDS

We investigate the effects of adding small world bonds
(SWBs) to the Hamiltonians HSE or/and HE for both case I

10-6

10-5

10-4

10-3

10-2

10-1

 0  5  10  15  20  25  30

Δσ

NE

FIG. 6. (Color online) Difference 	σ between the time-averaged
values of σ (t) for the initial state UDUDY and “X” of the whole
system (see Table I) as a function of the size of the environment NE .
Pluses, case I; circles, case II. The dotted line is a linear fit to the data
(pluses) for the UDUDY initial state, excluding the first three data
points, resulting in 	σ = 0.049/

√
DE .
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FIG. 7. (Color online) Simulation results of σ (t) for case I with N = 24 and NS = 4 with SWBs added. The initial state is UDUDY . The
dotted horizontal line represents the value of Eq. (8). Red solid line, ring without SWBs. (a) Randomly added SWBs between non-neighboring
environment spins. Green long-dashed line, one SWB; orange dotted line, two SWBs; purple short-dashed line, four SWBs; blue dotted-dashed
line, eight SWBs. (b) Randomly added SWBs between the system and environment spins such that K = 1. Green long-dashed line, one SWB;
orange dotted line, two SWBs; purple short-dashed line, four SWBs; blue dotted-dashed line, eight SWBs. (c) Randomly added SWBs between
the system and environment spins such that K = 2. Green long-dashed line, two SWBs; orange dotted line, four SWBs; purple short-dashed
line, six SWBs; blue dotted-dashed line, eight SWBs. (d) Same as (c) except that each pair of non-neighboring environment spins is connected
by a SWB. (Insets) Time evolution for short times.

and case II (see Fig. 1). To analyze the addition of SWBs to
HSE we distinguish between spin systems with K < 2 and
K � 2, where K denotes the maximum number of subsystem
spins that are connected via SWBs with one environment
spin. This distinction is motivated by the distinct decoherence
characteristics for systems with K < 2 and K � 2 for case
I (see next subsection). An example of a spin configuration
with K = 2 is shown in Fig. 1. In particular, we are interested
in whether systems with SWBs will exhibit the same scaling,
and whether they will decohere from an initial state faster
than either of the cases studied thus far. The addition of many
SWBs changes the graph from a one-dimensional ring to a
graph with equal bond lengths that can only be embedded
in high dimensions. The initial states are always UDUDY .
Furthermore, in order not to change too many parameters
simultaneously we start all simulations from the same state
“Y ” of the environment. Furthermore, after choosing the
random location (and couplings �α and 	α for case I) of
the first SWB we preserve this bond when adding additional
SWBs. We will see that cases I and II still behave very
differently.

A. Case I and SWBs

For investigating the universality of the final value of σ (t)
we add SWBs (random couplings in the interval [−0.2,0.2])
in the Hamiltonian HSE or/and HE for case I, and perform
simulations for N = 24 with NS = 4. From Fig. 7(a), we
see that adding more and more SWBs to HE speeds up
the decoherence process and that the final value of σ (t)
corresponds to the one given by Eq. (8). As seen in the inset,
adding SWBs to HE has no noticeable effect on the early time
behavior of σ (t).

Adding SWBs exclusively to HSE speeds up the deco-
herence process even further and even at early times clear
changes in σ (t) can be observed [see Figs. 7(b) and 7(c)].
For spin configurations with K = 1, σ (t) reaches the value
given by Eq. (8) for sufficiently long times, as can be seen
from Fig. 7(b). However, for configurations with K = 2 [see
Fig. 7(c)] or K > 2 (results not shown) σ (t) does not obey
the scaling property Eq. (8). Restoring this scaling property
seems to require an environment that is much more complex
than the one-dimensional one as indicated by Fig. 7(d) in
which we present simulation results for the case that SWBs

022117-7



FENGPING JIN et al. PHYSICAL REVIEW A 87, 022117 (2013)

10-4

10-3

10-2

10-1

100

 0  200  400  600  800  1000  1200  1400

σ(
t)

t

(a)

10-2

10-1

100

 0  10  20  30  40  50

10-4

10-3

10-2

10-1

100

 0  200  400  600  800  1000  1200  1400

σ(
t)

t

(b)

10-3

10-2

10-1

100

 0  10  20  30  40  50

10-4

10-3

10-2

10-1

100

 0  200  400  600  800  1000  1200  1400

σ(
t)

t

(c)

10-3

10-2

10-1

100

 0  10  20  30  40  50

10-4

10-3

10-2

10-1

100

 0  200  400  600  800  1000  1200  1400

σ(
t)

t

(d)

10-2

10-1

100

 0  10  20  30  40  50

FIG. 8. (Color online) Simulation results of σ (t) for case II with N = 26 and NS = 4 with isotropic SWBs added. The initial state
is UDUDY . The dotted horizontal line represents the value of Eq. (8). Red solid line, ring without SWBs. (a) Randomly added SWBs
between non-neighboring environment spins. Green long-dashed line, two SWBs; orange dotted line, four SWBs; purple short-dashed line,
six SWBs; blue dotted-dashed line, eight SWBs. (b) Randomly chosen SWBs between the system and environment spins such that K = 1.
Green long-dashed line, two SWBs; orange dotted line, four SWBs; purple short-dashed line, six SWBs; blue dotted-dashed line, eight SWBs.
(c) Randomly chosen SWBs between the system and environment spins such that K = 2. Green long-dashed line, two SWBs; orange dotted line,
four SWBs; purple short-dashed line, six SWBs; blue dotted-dashed line, eight SWBs. (d) Same as (c) except that each pair of non-neighboring
environment spins is connected by a SWB. (Insets) Time evolution for short times.

between all non-neighboring environment spins have been
added.

B. Case II and SWBs

For case II, isotropic SWBs are added to HSE or/and HE .
From Fig. 8, it is clear that even for long times none of the
curves approach the dotted horizontal line, the value of σ (t)
for an initial state “X.” Adding SWBs exclusively to HE does
not have a dramatic effect on σ (t) and has very little effect at
early times [see Fig. 8(a)].

Just as for case I, it is seen that adding a few SWBs
exclusively to HSE for a spin configuration with K = 1
significantly decreases the time to approach the steady state,
and that the SWBs in HSE also lead to a decrease in σ (t)
for a fixed time even at early times [see Fig. 8(b)]. For spin
configurations with K = 2, cases I and II seem to have similar
decoherence properties if SWBs are added exclusively to HSE ,
as seen by comparing Figs. 7(c) and 8(c). However, connecting
in addition each pair of non-neighboring environment spins by
isotropic SWBs drives the curves very far away from the value
of σ (t) for an initial state “X” [see Fig. 8(d)].

C. Summary: SWBs

Adding SWBs to HSE or/and to HE changes the rate
of decoherence as seen by the approach to the asymptotic
value for σ (t). In case II, adding isotropic SWBs to HSE

or HE effectively alters some spin-spin correlations leading
to a decrease in the steady-state value of σ (t). However,
this decrease is not sufficient to reach the steady-state value
of σ (t) that complies with the prediction Eq. (8). Adding
isotropic SWBs to HSE and connecting in addition each pair of
non-neighboring environment spins by isotropic SWBs drives
the curves very far away from the value of σ (t) for an initial
state “X,” even much further away than the steady-state value
for a ring without SWBs. In contrast to case I systems with
K < 2 and K � 2 do not behave significantly different.

Comparing case II with case I for K < 2, we conclude that
without introducing the randomness in the x, y, z components
of the spin-spin couplings, the dynamics cannot drive the
system to decoherence if the initial state is different from a state
“X.” Increasing the complexity of the environment by adding
isotropic SWBs between all non-neighboring environment
spins does not help in this respect, even on the contrary.
However, for case I and configurations with K � 2, increasing
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the complexity of the environment by adding SWBs between
all pairs of non-neighboring environment spins allows the
dynamics to drive the system to decoherence.

For both cases I and II, adding SWBs in HSE and HE

separately speeds up the decoherence in that it evolves more
quickly to a stationary state. The asymptotic value for σ (t) is
approached much faster when adding SWBs to HSE instead
of HE , and the SWBs in HSE also affect σ (t) at early times.
Thus a random SWB coupling to the system via HSE is the
most effective way to decrease the time for decoherence.

V. RANDOMNESS IN THE ENVIRONMENT

Section III A shows that for the initial state “X” the
scaling predicted by Eq. (8) is confirmed both for cases I
and II (see Fig. 2). However, Sec. III B shows that starting
from the initial state UDUDY this scaling is approached as
1/

√
DE for case I (see Figs. 3 and 6) but not for case II

(see Figs. 4 and 6). Section IV shows that adding SWBs in
case II does not significantly change the long-time behavior of
σ (t) approaching the predicted value of Eq. (8). Therefore the
natural question to ask is how much randomness is required
for σ (t) to obey the scaling relation Eq. (8). To answer this
question, we start from the isotropic Heisenberg ring (case II)
and replace the interaction strengths of a few randomly chosen
bonds by random �α

i,j [see Eq. (10)].
Figure 9 presents the simulation results for σ (t) by

introducing one, two, four, six, and eight random bonds in
the environment Hamiltonian HE of Eq. (10). The interaction
strengths �α

i,j of these randomly selected bonds are drawn ran-
domly from a uniform distribution in [−0.2,0.2]. Furthermore,
the randomly selected bond for the case with one random bond
is also a random bond for the case with two and more randomly
chosen bonds, thereby not changing too many parameters at a
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FIG. 9. (Color online) Simulation results of σ (t) obtained by se-
lectively replacing isotropic spin-spin interactions in the environment
by random bonds. The size of the system and whole system are
NS = 4 and N = 26, respectively. The initial state is UDUDY . Red
solid line, one random bond; green long-dashed line, two random
bonds; purple dotted line, four random bonds; orange short-dashed
line, six random bonds; blue dotted-dashed line, eight random bonds.
(Inset) Simulation results for one and two random bonds for long
times.

time. Simulations up to time t = 6000 show that introducing
four, six, and eight random bonds leads the system to relax
to the predicted value of σ [see Eq. (8)]. For times up to
t = 6000 the effect of one or two random bonds is not apparent.
Therefore for these two cases we performed extremely long
runs as shown in the inset of Fig. 9. The inset shows that even
one random bond suffices to recover the asymptotic value
Eq. (8). However the time scale to reach the asymptotic value
of σ can become extremely long. We leave the question of
how fast the approach to the predicted value of σ is for future
study.

For understanding the behavior of σ (t) in case II with
randomness, we investigate the individual components of the
reduced density matrix ρ̃ for the ring system. We study the
addition of one, two, up to eight randomly replaced bonds in
the environment. Recall that once the position for one random
bond is chosen, this is also one of the random bonds when there
are two or more random bonds. Similarly, the locations of the
random positions for a large number of random bonds include
the same positions and strengths as for a smaller number of
random bonds. Furthermore, the same initial state “Y ” of the
environment is chosen for all simulations. We studied the
effect of varying the positions of the randomly chosen bonds
and of different initial states “Y ” for the environment for a
couple of systems and did not find significant changes in our
observations.

Figure 10 presents the results of the time evolution of
the absolute value |ρ̃ij | of the individual components of the
reduced density matrix. For completeness we show both
the diagonal components and the off-diagonal components.
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t
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FIG. 10. (Color online) Time evolution of the components ρ̃ij of
the reduced density matrix of the system with N = 26 and NS = 4.
The initial state is UDUDY . (a) Case II. Starting from case II, one (b),
two (c), four (d), six (e), and eight (f) random bonds are introduced
in HE . Blue lines, diagonal components |ρ̃ii |; red lines, all six slowly
decaying components for |ρ̃ij | for one random bond; black lines, all
other 114 off-diagonal components |ρ̃ij |.
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Figure 10 shows that most of the 120 off-diagonal components
quickly relax to a small value [114 black lines in Figs. 10(b)–
10(e)]. The slowest decaying |ρ̃ij | are plotted in red. There are
six such components. In the steady state all |ρ̃ij | oscillate but
have nearly the same time-averaged value, in agreement with
the mean-field-type argument given in Appendix B. Thus, only
a few |ρ̃ij | are responsible for the lack of scaling of σ in case
II when starting from the initial state UDUDY , and also for the
long times required to approach the predicted value of Eq. (8)
of σ (t) in the case that there are one or two random bonds.

VI. CONCLUSIONS AND DISCUSSION

The main theoretical result of the current paper is Eq. (8) for
the decoherence of a quantum system S coupled to a quantum
environment E. For studying decoherence we examine σ (t),
which is the square root of the sum of all the off-diagonal
elements of the reduced density matrix ρ̃ for S in the basis that
diagonalizes the Hamiltonian HS of the system S. We find [see
also Eq. (8)] that

σ ≈ 1√
2DE

(
1 − 1

2DS

)
, (12)

where the reduced density matrix ρ̃ for S is a DS × DS matrix
while the density matrix of the whole system S + E is a D × D

matrix with D = DSDE . Thus DE does not have to be very
large in order for the predicted scaling to hold, in particular
the scaling requires DE � 1 � D−1

S . In addition the scaling
requires that S + E is driven from an initial wave function
toward a steady state which is well described by a state which
we called “X.”

We have performed large-scale real-time simulations of
the time-dependent Schrödinger equation for NS spins in the
system and NE spins in the environment. We have simulated
spin-1/2 systems with N = NS + NE up to N = 34, all with
NS = 4. Starting from a state “X” for S + E the simulations
agree very well with the scaling prediction Eq. (12), as shown
in Fig. 2. In Appendix C we demonstrate that in this case not
only the off-diagonal elements of ρ̃ obey a scaling relation but
also its diagonal elements obey a scaling relation, although a
different one.

Therefore as long as the dynamics drives the initial state
to a state “Z” which has similar properties as “X” the scaling
relation Eq. (12) should hold. The next step is to examine
under what conditions our test quantum model is driven to the
state “Z,” and study the time scale needed to relax from an
initial state to the state “Z.” For the one-dimensional quantum
spin-1/2 ring we find that homogeneous couplings do not
lead to an evolution to the state “Z” (Fig. 4), and hence
the scaling as 1/

√
DE is not observed. This conclusion is

not modified if some randomly chosen homogeneous small
world bonds are added (Fig. 8). Also systems with random
couplings and random small world bonds between system
and environment spins such that the maximum number of
system spins that interact with one environment spin is two or
larger do not evolve to a state “Z” [Fig. 7(c)]. In this case, the
environment requires a more complex connectivity than the
simple one-dimensional one in order to observe the scaling
as 1/

√
DE [Fig. 7(d)]. Therefore, although we find that some

randomness in the interaction strengths in E or between S and

E the dynamics is very important to drive the whole system
toward the state “Z,” as seen in Figs. 3, 5, 7(a), 7(b), and 9 it
is not always sufficient. Moreover it may take a long time to
evolve toward the state “Z” if there is only a little randomness
(Fig. 9) or if the environment E is large (the N = 34 results
of Fig. 3). The long time that may be required to approach the
state “Z” is due to only a few off-diagonal elements of ρ̃, as
seen in Fig. 10. We find that the approach to the state “Z” can
be sped up by adding randomness to E (Figs. 9 and 10).

What do our results say about the approach to the quantum
canonical ensemble? The canonical ensemble is given by the
diagonal elements of the reduced density matrix ρ̃ if the off-
diagonal elements [as measured by σ (t)] can be neglected
[1,17]. As long as E has a finite Hilbert space DE our scaling
results can be used to argue that in a strict sense, the system will
not be in the canonical state unless DE → ∞. However, if the
canonical distribution is to be a good approximation for some
temperatures T up to some chosen maximum energy Ehold >

0, then this requires that exp(−Ehold/kBT ) � σ which gives
for our spin-1/2 system kBT � 2Ehold/[NE ln(2)]. For this
argument to hold in the canonical distribution the energies are
taken to be positive values above the ground-state energy. This
lack of thermalization at low temperatures for small systems
is supported by simulations in Ref. [17].

What do our results say about trying to prolong the time
to decoherence in order to build practical quantum encryption
or quantum computational devices? The important thing is to
ensure that the system is not driven toward the state “Z,”
or at least that it takes a very long time to approach the
state “Z.” This can be achieved by changing the Hamiltonian
of the system, H = HS + HE + HSE , such that it has very
small randomness particularly in the coupling between the
system and the environment, HSE . Alternatively extrapolating
from Fig. 10 if one can devise an experimental procedure, for
example, a time-dependent procedure, to keep even a few of
the off-diagonal elements of ρ̃ large then the scaling prediction
Eq. (12) for the decoherence can be avoided, at least for
reasonable time scales.

The scaling of Eq. (12) can be contrasted with the predicted
scaling of the Hilbert space variant of a whole system which
should be proportional to (D + 1)−1 for the expectation value
of a local operator [31]. The results of the current research
are also relevant for methodologies for measuring finite-
temperature dynamical correlations [32] without performing
the complete TDSE evolution of the whole system.

We leave as future work the coupling between a system
S composed of spin-1/2 objects (qubits) and an environment
E composed of harmonic oscillators. In particular, we have
recently been able to build on exact calculations of a single spin
coupled to specific types of spin environment [33] to devise
an algorithm that does not have computer memory constraints
limited by the size of DE [34,35]. We are working to extend
this algorithm to other types of environment and for more than
one spin in the system S.
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APPENDIX A: SCALING WITHOUT AN ENVIRONMENT

For comparison of the scaling of σ (t) for the cases with and
without an environment, we derive the scaling for the case of
no environment. In the energy basis |i〉 of the (system, which
is now the whole system) Hamiltonian H , the density matrix
has elements,

ρij (t) = ci(t)c
†
j (t). (A1)

We use from Ref. [19] Eqs. (A12) and (A23). The expectation
value is

E(2σ 2) = E

⎛⎝ DS∑
i=1

DS∑
j �=i

|ci(t)cj (t)|2
⎞⎠

=
DS∑
i=1

DS∑
j �=i

E(|ci(t)cj (t)|2)

= DS(DS − 1)E(|ci(t)|2|cj (t)|2)

= 1 − 2

DS + 1
= DS − 1

DS + 1
. (A2)

The final scaling result for the quantity σ that we measure is

σ ≈ 1√
2

√
E(2σ 2) = 1√

2

√
DS − 1

DS + 1

= 1√
2

− 1√
2DS

+ 1

2
√

2D2
S

− 1

2
√

2D3
S

+ 3

8
√

2D4
S

+ · · · . (A3)

Therefore without an environment, σ approaches a constant as
the size of the system (which is the whole system) grows.
This also means that for the state “X,” if all off-diagonal
elements are the same they will have a size of |ρij (t)|2 =
1/DS(DS − 1) ∼ 1/D2

S while if all the diagonal elements are
equal (corresponding to infinite temperature) |ρii(t)|2 = 1/DS

since Trρ(t) = 1. We have performed simulations (results not
shown) to ensure that for the case without an environment σ

obeys the scaling relation of Eq. (A3) and it does.

APPENDIX B: MEAN-FIELD-LIKE REDUCED
DENSITY MATRIX

We make a connection between σ and the quantum purity
P = Tr[(ρ̂)2]. We assume a “mean-field-type” structure for
the reduced density matrix, namely we assume that all off-
diagonal elements have the same size ε. In our simulations
we find that in the energy basis the imaginary part of the off-
diagonal elements are very small, which validates our hypoth-
esis. However, the signs of the real part of the off-diagonal ele-
ments are not the same, which brings into question our “mean-
field-like” assumption. Nevertheless, we make the assumption

that

ε =
√

2σ 2

DS(DS − 1)
. (B1)

We introduce the matrix J with all its elements having the
value 1, the matrix D which is the diagonal matrix composed
of the diagonal elements of ρ̂, and the identity matrix I. Note
that J2 = DSJ. The “mean-field-type” assumption then reads

ρ̂ = D + εJ − εI, (B2)

which as seen from the graphs in Fig. 10 should be a
reasonable assumption in the steady-state regime. We will use
the relationships,

Tr(D) = 1, Tr(D2) � 1, Tr(I) = Tr(J) = DS,
(B3)

Tr(DJ) = Tr(JD) = 1, Tr(J2) = D2
S,

with the first relationship being a consequence of the trace of
a density matrix being equal to unity. Then one has that

P = Tr(ρ̂2) = Tr[(D + εJ − εI)2]

= Tr(D2 − 2εD + ε2I + εDJ + εJD − 2ε2J + ε2J2)

= Tr(D2) + 2σ 2 = Tr(D2) +
1 − 1

DS

DE + 1
DS

= Tr(D2) + 1

DE

(
1 − 1

DS

− 1

DEDS

+ 1

DED2
S

+ · · ·
)

.

(B4)

In the canonical ensemble the diagonal elements of the reduced
density matrix are related to the terms in the canonical partition
function, in particular, ρ̂ii = e−βEi /Z [16,17]. Therefore we
have a connection between the quantum purity P and how
close the system is to a canonical ensemble. In the steady state
this difference is of the order of 1/DE .

With the same “mean-field-like” assumption for ρ̂ in the
steady state one can look at corrections to the von Neumann
entropy of the system, S = −Tr(ρ̂lnρ̂). However, we do not
find the final result too enlightening.

APPENDIX C: DIAGONAL ELEMENTS OF THE REDUCED
DENSITY MATRIX

In the main text, we investigated the scaling property of
the off-diagonal elements of the reduced density matrix of a
system coupled to an environment. For being complete in the
contents, we present some numerical and analytical results
concerning the diagonal elements.

In general, based on the fact that the system decoheres,
i.e., the off-diagonal elements of the reduced density matrix
approach zero, we expect that the diagonal elements take
(approach to) the form of the canonical distribution exp(−βEi)
where β = 1/kBT with T denoting the temperature and
kB Boltzmann’s constant, which is taken to be one in this
paper, and where Ei’s denote the eigenvalues of HS [16,17].
The difference between the diagonal elements ρ̃ii(t) and the
canonical distribution is conveniently characterized by

δ(t) =

√√√√ DS∑
i=1

(
ρ̃ii(t) − e−b(t)Ei /

DS∑
i=1

e−b(t)Ei

)2

, (C1)
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with a fitting inverse temperature,

b(t) =
∑

i<j,Ei �=Ej
[ln ρ̃ii(t) − ln ρ̃jj (t)]/(Ej − Ei)∑

i<j,Ei �=Ej
1

. (C2)

If the system relaxes to its canonical distribution both δ(t) and
σ (t) are expected to vanish, b(t) converging to the effective
inverse temperature b.

The numerical simulations of which we present the results
correspond to those used to make Fig. 2. The initial state for
those simulations is “X.” We analyze the diagonal elements,
instead of the off-diagonal elements, of the reduced density
matrix and calculate the quantity δ(t). In Fig. 11, we present
the time-averaged value δ of δ(t) for each system size. It is
interesting to see that the quantity δ also has a kind of scaling
property. As the whole system size N increases, δ decreases
as 1/

√
D, where D = 2N .

In fact the fitting inverse temperature b(t) is very close to
zero for reasonably large NE (data not shown). The canonical
distribution of S at b = 0 is represented by a diagonal density
matrix with elements 1/DS , where DS = 2NS . Then, we are
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 5  10  15  20  25  30  35

– δ
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FIG. 11. Simulation results for the time-averaged value δ̄ of δ(t)
[see Eq. (C1)] for case I (bullets) and case II (squares) for different
sizes N of the whole system. The initial state of the whole system is
“X” (see text). The dotted line is 1/

√
2N .

able to derive the scaling property for δ as we did to obtain
Eq. (7). The expectation value of δ is given by

E(δ2) = E

⎛⎜⎝ DS∑
i=1

∣∣∣∣∣∣
DE∑
p=1

C∗
i,pCi,p − 1

DS

∣∣∣∣∣∣
2
⎞⎟⎠ =

DS∑
i=1

DE∑
p=1,p′=1

E(|Ci,p|2|Ci,p′ |2) − 1

DS

=
DS∑
i=1

DE∑
p=1,p′=1

[(1 − δp,p′ )E(|Ci,p|2|Ci,p′ |2) + δp,p′E(|Ci,p|4)] − 1

DS

=
DS∑
i=1

DE∑
p=1,p′=1

[
(1 − δp,p′ )

1

D(D + 1)
+ δp,p′

2

D(D + 1)

]
− 1

DS

= DE + 1

D + 1
− 1

DS

= DS − 1

DS

1

D + 1
. (C3)

From Eq. (C3), we have δ ≈ 1/
√

D for DS > 1 and DE � 1. Therefore, if the size of the environment goes to infinity with the
final state being the state “X,” the diagonal elements of the reduced density matrix of the system approach 1/DS .
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