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In this paper we study the excitation spectrum of graphene in a strong magnetic field, beyond the Dirac

cone approximation. The dynamical polarizability is obtained using a full p-band tight-binding model

where the effect of the magnetic field is accounted for by means of the Peierls substitution. The effect of

Available online 19 April 2012

Keywords:

A. Graphene

D. Quantum Hall effect

D. Landau level splitting
98/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.ssc.2012.04.041

esponding author.

ail address: s.yuan@science.ru.nl (S. Yuan).
a b s t r a c t

electron–electron interaction is considered within the random phase approximation, from which we

obtain the dressed polarization function and the dielectric function. The range of validity of the Landau

level quantization within the continuum approximation is studied, as well as the non-trivial

quantization of the spectrum around the Van Hove singularity. We further discuss the effect of

disorder, which leads to a smearing of the absorption peaks and temperature, which activates

additional inter-Landau level transitions induced by the Fermi distribution function.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most remarkable features of graphene is its anom-
alous quantum Hall effect (QHE), which reveals the relativistic
character of the low energy carriers in this material [1,2]. In fact,
the linear electronic dispersion of graphene near the neutrality point
leads to a relativistic quantization of the electrons’ kinetic energy
into non-equidistant Landau levels (LL), with the presence of a zero-
energy LL, which is the characteristics spectrum for systems of
massless Dirac fermions [3,4]. As a consequence, the excitation
spectrum and the screening properties in graphene are different
from those of a standard two-dimensional electron gas (2DEG) with
a quadratic band dispersion, as it may be seen from the polarization
and dielectric function in the two cases [5–9].

The Coulomb interaction between electrons in completely filled
LLs leads to collective excitations and to the renormalization of the
electronic properties such as the band dispersion and the Fermi
velocity. These issues have been studied both theoretically
[10–23,49] and experimentally, in the framework of cyclotron
resonance experiments [17–21]. However, most of the theoretical
work has been based on the continuum Dirac cone approximation,
which does not apply when high energy inter-LL transitions are
probed. In recent experimental realization of ‘‘artificial graphene’’
[24], a two-dimensional nanostructure that consists of identical
potential wells (quantum dots) arranged in a honeycomb lattice,
the lattice constant (a� 130 nm) is much larger than the one in
ll rights reserved.
graphene (a0 � 0:142 nm). This provides a way to study graphene
in the ultra-high magnetic field limit, since a perpendicular
magnetic field in ‘‘artificial graphene’’ corresponds to an effective
field which is ða=a0Þ

2
� 8� 105 times larger than in graphene.

Furthermore, the recently developed techniques of chemical dop-
ing [25] and electrolytic gating [26] have enabled doping graphene
with ultrahigh carrier densities, where the band structure is no
longer Dirac-like and one should take into account the full p-band
structure including the Van Hove singularities (VHS).

In this paper, we present a complete theoretical study of the
density of states (DOS), the polarizability and dielectric function
of graphene in a strong magnetic field, calculated from a p-band
tight-binding model. The magnetic field has been introduced by
means of a Peierls phase [27,3], and the effect of long-range
Coulomb interaction is accounted for within the random phase
approximation (RPA). Our method allows us to study the effect of
temperature, which leads to the activation of additional inter-LL
transitions. We also study the effect of disorder in the spectrum,
which leads to a smearing of the resonance peaks.
2. Description of the method

In this section we summarize the method used in the numer-
ical calculation of the polarizability of graphene in the QHE
regime.1 A monolayer of graphene consists of two triangular
1 For a comprehensive discussion of the polarizability of graphene at zero

magnetic field, we refer the reader to Ref. [28].
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sublattices of carbon atoms with an inter-atomic distance of
a� 1:42 Å. By considering only first neighbor hopping between
the pz orbitals, the p-band tight-binding Hamiltonian of a gra-
phene layer is given by

H¼�
X
/i,jS

ðtija
y

i bjþh:c:Þþ
X

i

vic
y

i ci, ð1Þ

where ayi (bi) creates (annihilates) an electron on sublattice A
(B) of the graphene layer, and tij is the nearest neighbor hopping
parameter, which oscillates around its mean value t� 3 eV [29].
The second term of H accounts for the effect of an on-site
potential vi, where ni ¼ cyi ci is the occupation number operator.
For simplicity, we omit the spin degree of freedom in Eq. (1),
which contributes only through a degeneracy factor. In our
numerical calculations, we use periodic boundary conditions.
The effect of a perpendicular magnetic field B¼ Bẑ is accounted
by means of the Peierls substitution, which transforms the
hopping parameters according to [27]

tij-tij exp i
2p
F0

Z Rj

Ri

A � dl

� �
, ð2Þ

where F0 ¼ hc=e is the flux quantum and A is the vector potential,
e.g. in the Landau gauge A¼ ð�By,0;0Þ. We will calculate the DOS
and the polarization function of the system by using an algorithm
based on the evolution of the time-dependent Schrödinger equa-
tion. For this we will use a random superposition of all basis
states as an initial state 9jS (see e.g. Refs. [30,31])

9jS¼
X

i

aic
y

i ci90S, ð3Þ

where ai are random complex numbers normalized as
P

i9ai9
2
¼ 1.

The DOS, which describes the number of states at a given energy
level, is then calculated as a Fourier transform of the time-
dependent correlation functions

dðEÞ ¼ 1

2p

Z 1
�1

eiEt/j9e�iHt9jS dt, ð4Þ

with the same initial state defined in Eq. (3). The dynamical
polarization function can be obtained from the Kubo formula [32]

Pðq,oÞ ¼ i

V

Z 1
0

dteiot/½rðq,tÞ,rð�q,0Þ�S, ð5Þ

where V denotes the volume (or area in 2D) of the unit cell, rðqÞ is
the density operator given by

rðqÞ ¼
X

i

cyi ci expðiq � riÞ, ð6Þ

and the average is taken over the canonical ensemble. For the case
of the single-particle Hamiltonian, Eq. (5) can be written as [31]

Pðq,oÞ ¼� 2

V

Z 1
0

dteiot

� Im/j9nF ðHÞe
iHtrðqÞe�iHt½1�nF ðHÞ�rð�qÞ9jS, ð7Þ

where

nF ðHÞ ¼
1

ebðH�mÞ þ1
ð8Þ

is the Fermi–Dirac distribution operator, b¼ 1=kBT where T is the
temperature and kB is the Boltzmann constant, and m is the
chemical potential. In the numerical simulations, we use units
such that _¼ 1, and the average in Eq. (7) is performed over the
random superposition Eq. (3). The Fermi–Dirac distribution opera-
tor nF ðHÞ and the time evolution operator e�iHt can be obtained by
the standard Chebyshev polynomial decomposition [31].
Long-range Coulomb interaction is considered in the RPA,
leading to a dressed particle–hole polarization

wðq,oÞ ¼ Pðq,oÞ
1�VðqÞPðq,oÞ

, ð9Þ

where

VðqÞ ¼
2pe2

kq
ð10Þ

is the Fourier component of the Coulomb interaction in two
dimensions, in terms of the background dielectric constant k.
Furthermore, the dielectric function of the system is calculated as

eðq,oÞ ¼ 1�VðqÞPðq,oÞ: ð11Þ

The collective modes lead to zeroes of eðq,oÞ, and their dispersion
relation is defined from

Re eðq,oplÞ ¼ 1�VðqÞPðq,oplÞ ¼ 0, ð12Þ

which leads to poles in the response function (9). The technical-
ities about the accuracy of the numerical results have been
discussed elsewhere [30,31,28]. Here we just mention that the
efficiency of the method is mainly determined by three factors:
the time interval of the propagation, the total number of time
steps, and the size of the sample. The method is more efficient in
the presence of strong magnetic fields. Because for weak fields
(e.g., Bo1 T) the energy difference between LLs becomes very
small, this makes that the total number of time steps and the size
of the sample have to be large enough to provide the necessary
energy resolution in the numerical simulation.

3. Density of states and excitation spectrum

In this section we study the DOS and the excitation spectrum
of a graphene layer in a magnetic field, neglecting the effect of
disorder and electron–electron interaction. The B¼0 dispersion
relation of the p bands obtained from a tight-binding model with
nearest-neighbor hopping between the pz orbitals is

EðkÞ ¼ lt9fk9 ð13Þ

where l¼ 71 is the band index and

fk ¼ 1þ2ei3kxa=2 cos

ffiffiffi
3
p

2
kya

 !
: ð14Þ

The band dispersion equation (13) consists of two bands that touch
each other in the vertices of the hexagonal Brilloin zone (BZ)
(Fig. 1), which are the so-called Dirac points. In the absence of
longer range hopping terms, the band structure is electron–hole
symmetric, and the constant energy contours (CEC) obtained from
Eq. (13) are shown in Fig. 1. For undoped graphene (m¼ 0), which
is the band filling that we will consider all along this paper, the
Fermi surface consists of just six points at the vertices of the BZ. In
this case, the low energy excitations can be described by means of
an effective theory obtained from an expansion of the dispersion
equation (13) around the K points. This leads to an approximate
dispersion EðkÞ � lvFk, where vF ¼ 3ta=2 is the Fermi velocity.

If we now consider the effect of a perpendicular magnetic field,
the Landau quantization of the kinetic energy leads to a set of LLs,
which can be described from the semiclassical condition [33,3]

SðCÞ ¼
2p
l2B

nþ
1

2
�
GðCÞ
2p

� �
, ð15Þ

where

SðCÞ ¼

ZZ
Eðkx ,kyÞr En

dkx dky ð16Þ

is the area enclosed by the cyclotron orbit C in momentum space
[for circular orbits S(C) is just pk2], lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_c=eB

p
is the magnetic
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Fig. 1. Constant energy contours obtained from the band dispersion equation (13).

The thick black lines correspond to dispersion at the VHS 9E9¼ t. Notice that the

CEC are centered around the Dirac points for 9E9ot and around G for 9E94t. For

illustrative reasons, the hexagonal BZ is shown in white. For undoped graphene,

the valence and conduction bands touch each other at the vertices of the hexagon,

the so called Dirac points (K and K0). The Van Hove singularity lies at the M point,

and we have defined y as the angle between the wave-vector q and the kx-axis.

Fig. 2. (Color online) Left: DOS of a monolayer of graphene in a magnetic field, for two d

vertical lines indicate the position of the LLs in the continuum Dirac cone approximat
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length, n is the LL index and GðCÞ is the Berry phase. In graphene,
as we will discuss in the next section, GðCÞ ¼ p for orbits around
the K and K 0 points, and 0 for orbits around the G point [34]. From
the energy dependence of S(C) one can calculate the energy of the
Landau levels as

En ¼ S�1 2p
l2B

nþ
1

2
�
GðCÞ
2p

� � !
, ð17Þ

where S�1
ðxÞ is the inverse function to S(x). Using Eq. (17), it is

easy to check that the LL quantization corresponding to a low
energy parabolic band EðkÞ ¼ k2=2mb (where mb is the effective
mass) with a GðCÞ ¼ 0 Berry phase, is En ¼ocðnþ1=2Þ, where
oc ¼ eB=mb is the cyclotron frequency. On the other hand, a
linearly dispersing band as the one for graphene leads to a LL
quantization around the Dirac points as

El,n ¼ lEn ¼ l
vF

lB

ffiffiffiffiffiffi
2n
p

p

ffiffiffiffiffiffi
Bn
p

: ð18Þ

3.1. Density of states

The DOS close to the Dirac point can be approximated by [29]

dDiracðEÞ �
2Ac

p
9E9
v2

F

ð19Þ
ifferent values of B. Right: zoom of the low energy region of the spectrum. The red

ion, Eq. (19). We have used a sample made of 4096�4096 atoms.



Fig. 3. DOS obtained from Eq. (4) at B¼500 T. The insets show a zoom of the DOS

around the VHS 9E9� t and at 9E9� 2:5t.
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where Ac ¼ 3
ffiffiffi
3
p

a2=2 is the unit cell area. In Fig. 2 we show the
DOS for two different values of the magnetic field. The black line
corresponds to the numerical tight-binding result obtained from
Eq. (4). Near E¼ 0 we notice the presence of a zero energy LL
surrounded by a set of LLs whose separation decreases as the
energy increases, leading to a stacking of the LLs as we move
away from the Dirac points. The presence of a finite broadening in
these LLs is due to the energy resolution of the numerical
simulations, which is limited by the number of atoms used in
the calculation, as well as the total number of time steps, which
determines the accuracy of the energy eigenvalues. In order to
check the range of validity of the continuum approximation, in the
right-hand side of Fig. 2 we show a zoom of the positive low
energy part of the DOS for the two values of B, comparing the DOS
obtained with the full p-band tight-binding model of Eq. (4) [black
lines] to the Dirac cone approximation of Eq. (19) [vertical red
lines]. Contrary to multi-layer graphenes, for which trigonal
warping effects are important at rather low energies [35], we
see that the deviations of the LL positions in the continuum
approximation equation (19) with respect to the full p-band
model are weak even at energies of the order of E� 0:3t� 1 eV,
in agreement with magneto-optical transmission spectroscopy
experiments [22].

A much less investigated issue is the effect of the magnetic
field on the DOS around the VHS 9E9� t. For illustrative reasons
we show in Fig. 3 the numerical results for the DOS of a graphene
layer at an extremely high magnetic field of B¼500T.2 At this
energy the LL quantization is highly nontrivial because of the
saddle point in the band structure at which there is a transition
from CECs encircling the Dirac points, to CECs encircling the G
point, as it can be seen in Fig. 1. Because in the semiclassical limit,
the cyclotron orbits in reciprocal space follow the CECs, we have
that at the saddle point there is a change in the topological Berry
phase GðCÞ from GðCÞ ¼ 7p for orbits encircling the Dirac points
(9E9ot) to GðCÞ ¼ 0 for orbits encircling the G point (9E94t) [34].
The different character of the cyclotron orbits at both sides of the
saddle point leads to two series of LLs, with different cyclotron
frequencies oc ¼ eB=mb, that merge at the VHS, as it may be seen
2 Although this situation is unrealistic for a graphene membrane, the results

can be useful to better understand the Landau quantization and the collective

modes of artificially created honeycomb lattices where the large value of the

lattice constant a� 130 nm allows for the study of the ultra-high magnetic field

limit with lB ta [24].
in the left-hand side inset of Fig. 3. Because of the effective mass
mb below the VHS is larger than the one above it (the band below
the saddle point is flatter than above it), the cyclotron frequencies
are also different ocð9E9otÞoocð9E94tÞ, and consequently the
LLs are more separated for 9E94t than for 9E9ot. The possibility
of placing the chemical potential at the VHS would bring the
chance of studying highly anomalous inter-LL transitions, due to
the different separation of the LLs above and below the VHS.
Finally, at an even higher energy, the LL quantization is quite
similar to that of a 2DEG with a parabolic dispersion, with a set of
roughly equidistant LLs [23], as it may be seen in the right-hand
side inset of Fig. 3 for 9E9� 2:5t. However, we emphasize that for
realistic values of magnetic field, the LL quantization in graphene
is inappreciable in this range of energies, and the DOS for energies
9E9\0:7t is similar to the DOS at B¼0,[31] as it may be seen in
Fig. 2.

3.2. Particle–hole excitation spectrum

The particle–hole excitation spectrum (PHES) for non-inter-
acting electrons, which is the part of the o�q plane where
ImPðq,oÞ is non-zero, defines the region of the energy–
momentum space where particle–hole excitations are allowed.
For undoped graphene (m¼ 0), the particle–hole excitations
correspond to inter-band transitions across the Dirac points. In
Fig. 4 we show �ImPðq,oÞ for different values of wave-vector
and magnetic field. Two different orientations of q are shown,
namely along the G-M and G-K directions. First, due to the low
energy linear dispersion relation and to the effect of the chirality
factor (or wave-function overlap) that suppresses backscattering,
we observe that the strongest contribution to the polarization is
concentrated around o� vFq. In fact, at B¼0 it was shown [36]
that ImPðq,oÞ � q2ðo2�v2

F q2Þ
�1=2, which implies an infinite

response of relativistic non-interacting electrons in graphene at
the threshold o¼ vFq. The main difference of the PHES at finite
magnetic field with respect to its B¼0 counterpart in this low
energy range is that in the Ba0 case Pðq,oÞ presents a series of
peaks of strong spectral weight, due to the LL quantization of the
kinetic energy, that we will discuss in more detail below. We
notice that, for the realistic values of magnetic field used in Fig. 4,
the spectrum at finite magnetic field roughly coincides with the
one at B¼0 at high energies. This is due to the almost negligible
effect of the magnetic field on the DOS at energies 9E9\0:7t for
Bt50 T, as we saw in the previous section. This part of the
spectrum is dominated, as in the B¼0 case [37,28,50], by a peak of
ImPðq,oÞ around o� 2t, which is due to particle–hole transitions
between states of the Van Hove singularities of the valence and
the conduction bands at E��t and E� t respectively.

However, the low energy part of the spectrum is completely
different to its zero magnetic field counterpart, and it is domi-
nated by a series of resonance peaks at some given energy values.
For the undoped case studied here, the possible excitations
correspond to inter-LL transitions of energy on,n0 ¼ En0 þEn, where
n0 is the LL index of the particle in the conduction band (l¼ þ1)
and n is the LL index of the hole in the valence band (l¼�1). In
the continuum approximation, they have an energy

on,n0 ¼
ffiffiffi
2
p
ðvF=lBÞð

ffiffiffiffi
n0
p
þ

ffiffiffi
n
p
Þ: ð20Þ

The energy corresponding to each of these transitions is indicated
by a black vertical line in Fig. 4(b) and (d), where we show a zoom
of �ImPðq,oÞ that corresponds to the low energy LL transitions
about the Dirac points. Notice that, in contrast to a standard 2DEG
with a parabolic dispersion and equidistant LLs, the relativistic
quantization of the energy band in graphene makes that in a fixed
energy window at high energies, there are more possible inter-LL
excitations from the level n in the valence band to the level n0 in



Fig. 4. (Color online) �ImPðq,oÞ for different values of wave-vector q and strength of the magnetic field B. The angle y defines the orientation of the wave-vector in the

Brilloin zone (see Fig. 1). Plots (a) and (c) show the polarization in the whole energy range. For comparison we show the polarization at B¼0. In plots (b) and (c) we show

the low energy part of the spectrum. The vertical black lines signal the energy of the particle–hole processes expected from Eq. (20).
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the conduction band, than at low energies. As a consequence,
there is a stacking of neighboring LL transitions as we increase the
energy of the excitations, which manifests itself in a continuum of
possible inter-LL transitions from a given energy, which for the
case of Fig. 4(b) at B¼20T is o=t\0:25.

Contrary to what one can naively expect, only at very strong
magnetic fields and for small values of o and q, the peaks of
�ImPðq,oÞ occur at the energies given by Eq. (20). In fact, we can
see in Fig. 4(d) that for B¼50 T and for the smaller value of q

shown (red line), the peaks of �ImPðq,oÞ match very well the
energies for the inter-LL transitions given by Eq. (20). However, at
weaker magnetic fields and/or larger wave-vectors, the peaks of
the polarization function do not coincide any more with every of
the inter-LL transitions given by Eq. (20). In fact, there is a series
of peaks of ImPðq,oÞ, corresponding to regions of the PHES of
high spectral weight, which can be understood from the form of
the wavefunctions of the electron and the hole that overlap to
form an electron–hole pair. A detailed discussion about the
structure of the PHES in graphene in comparison with a 2DEG
can be found in Ref. [8]. Here we just remember that the modulus
of the LL wavefunction, due to the zeros of Laguerre polynomials,
presents a number of nodes that depend on the LL index n. On the
other hand, the existence of an electron–hole pair will be possible
if there is a finite overlap of the electron and hole wavefunctions,
which will define the form factor for graphene in the QHE regime,
Fn,n0 ðqÞ. Because the node structure of the single-particle wave-
functions will be transferred to 9F n,n0 ðqÞ9

2
, all together will lead to

a highly modulated spectral weight in the PHES, as it is seen in
Fig. 4(b) and (d).
4. Collective modes

In the previous section we have discussed the excitation
spectrum in the absence of electron–electron interaction. In this
section we include in the problem the effect of long-range
Coulomb interaction. The polarization and dielectric functions
are calculated within the RPA, Eqs. (9) and (11). Within this
framework, the existence of collective excitations will be identi-
fied by the zeros of the dielectric function or equivalently by the
divergences of the loss function �Im½1=Eðq,oÞ�, which is propor-
tional to the spectrum measured by Electron Energy Loss Spectro-
scopy (EELS) [38]. In Fig. 5 we show the loss function of graphene
in a magnetic field, as compared to the one at B¼0. At B¼0 the
main structure is the broad peak at o� 2t, associated to the
p-plasmon [28]. When the graphene layer is subjected to a strong
perpendicular magnetic field, Im½1=eðq,oÞ� presents a series of
prominent peaks at low frequencies, associated to collective
modes in the QHE regime, as it may be seen in Fig. 5(b). Similar
to the single-particle case discussed in Section 3.2, the strength of



Fig. 5. (Color online) (a) Loss function �Im 1=eðq,oÞ in the RPA, for different values of wave-vector. The results for graphene in a magnetic field of B¼50 T are compared to

the B¼0 case. (b) Zoom of the low energy part of the spectrum.

Fig. 6. (Color online) Re eðq,oÞ for B¼0 (red lines) and B¼50 T (black lines), for the values of the wave-vectors used in Fig. 5.
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the peak is determined by the Coulomb matrix elements
VðqÞ9Fn,n0 ðqÞ9

2
, which depends strongly on the wave-vector q.

We emphasize that these modes cannot be understood as a
simple many-body renormalization of the dispersionless inter-
LL transitions given in Eq. (20), because only the low energy and
long wavelength modes have their non-interacting counterpart
on,n0 associated to a specific single-particle electron–hole transi-
tion with well-defined indices n and n0. As we go to higher
energies and/or weaker magnetic fields, the relativistic LL quan-
tization of graphene leads to a so strong LL mixing that the
collective modes cannot be labeled any more in terms of single-
particle excitations [39,40], as in the case of a 2DEG with a
quadratic dispersion and a set of equidistant LLs [41].

In Fig. 6 we compare the real part of the dielectric function
Re eðq,oÞ for zero and finite magnetic field. The zeros of Re eðq,oÞ
correspond to the frequencies of the undamped collective modes.



Fig. 7. (Color online) (a) DOS of clean graphene (black lines) and of disordered graphene with a random on-site potential (red lines) and with a random renormalization

of the hopping integrals (blue lines). The inset shows the smearing of the VHS peak due to disorder. (b) Zoom of the low energy part of the spectrum.

Fig. 8. (Color online) (a)–(c) Non-interacting single-particle excitation spectrum of graphene in a magnetic field of B¼50 T, as defined by �ImPðq,oÞ, for different kinds of

disorder and for different values of the wave-vector q. The black vertical lines signal the energy of the electron–hole processes defined by Eq. (20). (d)–(f) Loss function

�Im½1=eðq,oÞ� in the RPA. (g)–(i) Real part of the dielectric function Re eðq,oÞ in the RPA.

S. Yuan et al. / Solid State Communications 152 (2012) 1446–14551452
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Contrary to the B¼0 case, for which there is no collective modes
for undoped graphene at the RPA level, at Ba0 we observe a
number of well-defined zeros for Re e, which correspond to
coherent and long-lived linear magneto-plasmons [14]. The
divergence of ImPðq,oÞ at o¼ vFq and the absence of back-
scattering in graphene make that, as we increase the wave-vector
q, the more coherent collective modes are defined also for higher
frequencies, namely around the threshold o� vFq, which is the
frequency associated to the highest peaks in Fig. 5(b). For even
higher energies, the main contribution to the modes of large
frequencies are inter-LL transitions between well-separated LLs,
with the subsequent reduction in the overlap in the electron–hole
wavefunctions. Therefore, the collective modes will suffer a
stronger Landau damping as higher frequencies are probed.

4.1. Effect of disorder

Now we focus our attention on the effect of disorder on the DOS
and on the excitation spectrum of graphene in the QHE regime. In
general, disorder leads to a broadening of the LLs, with extended
(delocalized) states near the center of the original LL, and localized
states in the tails. We consider here two different kinds of disorder,
namely random local change of the on-site potentials vi, which acts
as a chemical potential shift for the Dirac fermions, and random
renormalization of the hopping amplitudes tij, due e.g. to changes of
distances or angles between the carbon pz orbitals. They enter in the
single-particle Hamiltonian as given in Eq. (1). The effect of
correlated long-range hopping disorder has been shown to lead to
Fig. 9. (Color online) DOS of clean graphene for different values of temperature T and m

for each case.
a splitting of the n¼0 LL [42,43], originated from the breaking of the
sublattice and valley degeneracy. Other kinds of disorder as vacan-
cies create midgap states that make the n¼0 LL to remain robust,
whereas the rest of LLs is smeared out due to the effect of disorder
[31]. In Fig. 7 we show the DOS of graphene in a perpendicular
magnetic field of B¼50 T for different kinds of disorder, as com-
pared to the clean case. We let the on-site potential vi to be
randomly distributed (independently on each site i) between �vr

and þvr . On the other hand, the nearest-neighbor hopping tij is
random and uniformly distributed (independently on sites i,j)
between t�tr and tþtr . At high energies, as we have seen in
Section 3.1, the DOS for this strength of the magnetic field is quite
similar to the DOS at B¼0. Therefore, as in the zero field case
[31,28], the main effect away the Dirac point is a smearing of the
VHS at 9E9¼ t, as it is observed in the inset of Fig. 7(a).

Well-defined LLs occur around the Dirac point, and the effect of
disorder on the peaks is observed in Fig. 7, where we show a zoom of
the low energy part of the DOS around E¼ 0. Both kinds of disorder
(random on-site potential and random hopping) lead to a similar
effect, producing a broadening of the LLs. We can also observe,
especially for the highest LLs shown in Fig. 7(b), a tiny but appreciable
redshift of the position of the center of the LLs with respect to its
original position, in agreement with previous works [44,43]. The full
self-consistent Born approximation calculations for graphene with
unitary scatterers of Ref. [45] lead to a rather significant change in the
position of the LLs towards higher energies. However, the exact
transfer matrix and diagonalization calculations of Ref. [46] found
only a small shift of the LL position for very strong disorder.
agnetic field B. The shaded area is a sketch of the Fermi–Dirac distribution function
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We now study the effect of disorder on the PHES. In Fig. 8
(a)–(c) we show �ImPðq,oÞ for different values of q, and for
different kinds of disorder. First we notice a smearing of the
resonance peaks associated to the LL broadening due to disorder.
Whereas for low energies the position of the resonance peaks of
disordered graphene coincides with the position for the clean
case, we observe a redshift of the resonance peaks as we consider
inter-LL transitions of higher energies. This is due to the change in
the position of the high energy LLs of disordered graphene
with respect to the original LLs, as we have discussed previously
[see Fig. 7(b)].

The presence of disorder will also affect the dispersion relation
and coherence of the collective modes when the effect of
electron–electron interaction is included. In particular, the effect
of a short-range disorder on graphene in a magnetic field can lead,
due to the possibility of inter-valley processes associated to the
breakdown of sublattice symmetry, to the localization of some
collective modes on the impurity [47]. In Fig. 8(d)–(f) we show
the effect of a random on-site potential or a random hopping
renormalization on the loss function. First, we can observe an
important attenuation of the intensity peaks due to disorder.
Second, as we have discussed above, the position of the peaks of
disordered and clean graphene coincides at low energies, but not
at high energies, where the resonance peaks of the loss function of
disordered graphene are shifted with respect to clean graphene.
Fig. 10. (Color online) (a) and (b) �ImPðq,oÞ for two different values of T and B. The b

which are possible at T¼0. The red vertical lines correspond to the energy of thermally

values of T and B.
Although we obtain a similar renormalization of the spectrum for
the two kinds of disorder considered here, we reiterate that this
effect is highly dependent on the type of disorder considered, as
well as the theoretical method used to obtain the spectrum.

Finally, we mention that the disorder LL broadening leads to an
amplification of the LL mixing discussed above. As a consequence,
some collective modes which are undamped for clean graphene,
start to be Landau damped due to the effect of disorder. Indeed, in
Fig. 8(g)–(i) we can see how Eq. (12), which is the condition for the
existence of coherent collective modes, is fulfilled more times for
the clean case than for the disordered membranes, for which the
collective modes are more highly damped.

4.2. Effect of temperature: thermally activated electron–hole

transitions

In this subsection we discuss the effect of temperature on
the excitation spectrum, which enters in our calculations
through the Fermi–Dirac distribution function equation (8).
Temperature can activate additional inter-LL transitions due to
free thermally induced electrons and holes in the sample. In
Fig. 9 we sketch the LLs of undoped clean graphene that are
thermally activated, for two different strengths of the magnetic
field. For this, the corresponding Fermi–Dirac distribution
function is sketched on each plot, indicating the LLs that can
lack vertical lines denote the position of the inter-LL transitions given by Eq. (20)

activated inter-LL transitions. (c) and (d) Loss function �Im½1=eðq,oÞ� for the same
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be partially populated with electrons (holes) in the conduction
(valence) band. Notice that at T¼0 and for m¼ 0, nF ðEÞ is just a
step function that traverses the n¼0 LL. Of course, the number
of activated LLs, which are those crossed by the tail of nF ðEÞ,
grows as we increase the temperature and/or as we decrease
the magnetic field. The population effect due to the thermal
excitations of carriers has been observed by far infrared
transmission experiments [48].

In Fig. 10 we show the single-particle polarization and the loss
function for two values of temperature and magnetic field. At
room temperature and for the rather strong magnetic fields
considered in our calculation, the allowed electron–hole transi-
tions are the same as in the zero temperature limit (see the top
panels of Fig. 9). Therefore, the peaks of ImP for T¼300 K are
centered at the frequencies of inter-LL transitions marked by
the black vertical lines, which accounts only for the usual inter-
band transitions across the Dirac point. For a considerable higher
temperature of T ¼ 103 K there are additional electron–hole
transitions (some of them intra-band processes, especially
important at low frequencies) which are now allowed due to
the effect of temperature, as marked by the red vertical lines in
Fig. 10(a) and (b). These thermally activated inter-LL transitions at
high temperatures contribute to the additional spectral weight of
the PHES of Fig. 10(a) and (b). Finally, in Fig. 10(c) and (d) we
show the loss functions corresponding to the magnetic fields and
temperatures discussed above. As we have discussed above, the
peaks of Im 1=e correspond to the position of collective excita-
tions. Here we find, in agreement with previous tight-binding and
band-like matrix numerical methods [16], a weak but appreciable
renormalization of the collective mode peak position as a function
of temperature. This temperature dependence of the collective
mode is easily noticed by comparing the red and blue peaks at
o� 0:12t of Fig. 10(d).
5. Conclusions

In conclusion, we have studied the excitation spectrum of a
graphene layer in the presence of a strong magnetic field, using a
full p-band tight-binding model. The magnetic field has been
introduced by means of a Peierls substitution, and the effect of
long-range Coulomb interaction has been considered within the
RPA. For realistic values of the magnetic field, the LL quantization
leads to well-defined LLs around the Dirac point, whereas the DOS
at higher energies is rather similar to the one at zero field.
However, we have shown that in the ultra-high magnetic field
limit [24], for which the magnetic length is comparable to the
lattice spacing, the LL quantization around the Van Hove singu-
larity is highly nontrivial, with two different sets of LLs that
merge at the saddle point.

Our results for the polarization function shows that, at high
energies, the PHES is dominated, as in the B¼0 case [28], by the
p-plasmon, which is associated to the enhanced DOS at the VHS of
the p bands. The low energy part of the spectrum is, however,
completely different to its zero field counterpart. The relativistic
LL quantization of the spectrum into non-equidistant LLs leads to
a peculiar excitation spectrum with a strong modulation of the
spectral weight, which can be understood in terms of the node
structure of the electron–hole wavefunction overlap [8]. Further-
more, we have shown that the presence of disorder in the sample
lead to a smearing of the resonance peaks of the loss function, and
to an enhancement of the Landau damping of the collective
modes. Finally, we have studied the effect of temperature on
the spectrum, and shown that it can activate additional inter-LL
transitions, effect which is especially relevant at low magnetic
fields.
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