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Excitation spectrum and high-energy plasmons in single-layer and multilayer graphene
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In this paper we study the excitation spectrum of single-layer and multilayer graphene beyond the Dirac cone
approximation. The dynamical polarizability of graphene is computed using a full 7-band tight-binding model,
considering the possibility of interlayer hopping in the calculation. The effect of electron-electron interaction is
considered within the random phase approximation. We further discuss the effect of disorder in the spectrum,
which leads to a smearing of the absorption peaks. Our results show a redshift of the w-plasmon dispersion of
single-layer graphene with respect to graphite, in agreement with experimental results. The inclusion of interlayer
hopping in the kinetic Hamiltonian of multilayer graphene is found to be very important to properly capture the

low energy region of the excitation spectrum.
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I. INTRODUCTION

One of the main issues in the understanding of the physics of
graphene is the role played by electron-electron interaction.'
Several collective modes as low and high energy plasmons,
as well as plasmarons, are a consequence of electronic
correlations and have been measured in this material. The high
energy 7 plasmons have been observed in electron energy-loss
spectroscopy (EELS),>™ inelastic x-ray scattering (IXS),> or
optical conductivity.® Recently, a plasmaron mode (which is
a result of coupling between electrons and plasmons) has
been measured in angle-resolved photoemission spectroscopy
(ARPES).”

At low energies, long range Coulomb interaction leads, in
doped graphene, to a gapless plasmon mode which disperses as
wp ~ /q (Ref. 8), and which can be described theoretically
within the random phase approximation (RPA).°~!* The low
energy linear dispersion relation of graphene is at the origin
of a new series of collective modes predicted for this
material and which do not exist for other two-dimensional
electron gases (2DEG), as intervalley plasmons' or linear
magnetoplasmons, '® which can be described within the RPA as
well. For undoped graphene, the inclusion of ladder diagrams
in the polarization can lead to a new class of collective modes'”
as well as to an excitonic instability.'3->?

However, much less is known about the high energy m
plasmon, which, in the long wavelength limit, has an energy
of the order of 5-6 eV, and which is due to the presence of
Van Hove singularities in the band dispersion. For single-layer
graphene (SLG), this mode has been studied by Stauber et al.?®
and by Hill et al.®* in the RPA. Yang et al. have included
excitonic effects and found a redshift of the absorption peak,?
leading to a better agreement with the experimental results.
Here we extend those previous works and study the excitation
spectrum of SLG and multilayer graphene (MLG) from a
tight-binding model on a honeycomb lattice. By means of
the Kubo formula, the noninteracting polarization function
I1(q,w) is obtained from the numerical solution of the time-
dependent Schrodinger equation. Coulomb interactions are
considered in the RPA, the validity of which is discussed. We
also consider the effect of disorder in the system, which lead
to a considerable smearing of the Van Hove singularities in the
spectrum. Our results show a redshift of the w-plasmon mode
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in graphene with respect to graphite, as it has been observed
in the experiments.>* Furthermore, the inclusion of interlayer
hopping is found to be very important to capture the low energy
region of the spectrum in MLG.

The paper is organized as follows. In Sec. II we describe
the method that we use to compute the dynamical polarization
function of SLG and MLG. In Sec. III we give results for the
excitation spectrum of SLG, considering the effect of disorder
and electron-electron interaction. The spectrum of MLG is
described in Sec. IV.In Sec. V we compare our results to recent
experimental data. Our main conclusions are summarized in
Sec. VL.

II. DESCRIPTION OF THE METHOD

The tight-binding Hamiltonian of a MLG is given by

Niayer Niayer—

1
H:ZH,—i—ZH’, (1)
=1 =1

where H; is the Hamiltonian of the /th layer of graphene,

H=-Y" (t14ja] by, + H.c) + > vicl e (2)

<i,j> i

where a,]t ; (b1;) creates (annihilates) an electron on sublattice
A (B) of the /th layer, and #; ;; is the nearest neighbor hopping
parameter. The second term of H; accounts for the effect of
an on-site potential v; ;, where n;; = Cz]L,iCl,i is the occupation
number operator. In the second term of the Hamiltonian Eq. (1),
H] describes the hopping of electrons between layers ! and
[ + 1. In nature there are two known forms of stable stacking
sequence in bulk graphite, namely ABA (Bernal) and ABC
(rhombohedral) stacking, and they are schematically shown in
Fig. 1. For a MLG with an ABA stacking, H] is given by

H =y Y [} b+ Hel
J
—vs ) b a1+ Hel, 3
BJ’
where the interlayer hopping terms y; and y; are shown in

Fig. 1. Thus, all the even layers (I 4 1) are rotated with respect
to the odd layers (/) by +120°. The difference between ABA
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FIG. 1. Atomic structure of ABA- and ABC-stacked multilayer
graphene. The intralayer () and interlayer (y; and y3;) hopping
amplitudes are considered, as explained in the text.

and ABC stacking is that, the third layer(s) is rotated with
respect to the second layer by —120° (then it will be exactly
under the first layer) in ABA stacking, but by +120° in ABC
stacking.?® In this paper we use the hopping amplitudes ¢t =
3eV,y; =0.4eV,and y3 = 0.3 eV (Ref. 27). The spin degree
of freedom contributes only through a degeneracy factor and is
omitted for simplicity in Eq. (1). In our numerical calculations,
we use periodic boundary conditions in the plane (XY) of
graphene layers, and open boundary conditions in the stacking
direction (Z).

The dynamical polarization can be obtained from the Kubo
formula?® as

[(q.0) = ZV,/O dte'” ([p(q,7),p(—q,0)]), “

where V denotes the volume (or area in 2D) of the unit cell,
p(q) is the density operator given by

Nayer

p(@ =Y el criexpliq ), ©)
I=1 i
and the average is taken over the canonical ensemble. For the

case of the single-particle Hamiltonian, Eq. (4) can be written
29
as

2 [ ; ;
I(q,0) = 7 / dre " Im(plnp(H)e' ™™
0

x p(@e [l — np(H)lp(—q)lg),  (6)

FIG. 2. 2D Brillouin zone of SLG. For undoped graphene, the
valence and conduction bands touch each other at the vertices of
the hexagon, the so-called Dirac points (K and K’). The Van Hove
singularity lies at the M point, and we have defined 6 as the angle
between the wave vector ¢ and the k, axis.
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where np(H) = m is the Fermi-Dirac distribution op-
erator, B = 1/kgT where T is the temperature and kj is the
Boltzmann constant, and p is the chemical potential. In the
numerical simulations, we use units such that 7 = 1, and the
average in Eq. (6) is performed over a random superposition
of all the basis states in the real space, that is,>*

) = aric/ 10, )
Li

where ¢;; are random complex numbers normalized as
3", . lai:1* = 1. By introducing the time evolution of two wave
functions

lo1(q,0) = e T [1 — np(H)]p(—=q)lg), ®)

|p2(0)) = e~ T np(H)lg), ©))

we get the real and imaginary parts of the dynamical polariza-
tion as

2 oo
Rell(q.w) = —7/0 dt cos(@t)Im(pa (7)) p(Qle1 (7)),
10)

2 [o.¢]
ImI(q,0) = —7/0 dt sin(wt)Im(px(7)| p(@)l1(7)).

The Fermi-Dirac distribution operator ny(H) and the time
evolution operator e "7 can be obtained by the standard
Chebyshev polynomial decomposition.?’

For the case of SLG, we will further compare the polariza-
tion function obtained from the Kubo formula Eq. (4), to the
one obtained from the usual Lindhard function.>' Notice that
this method can be used to calculate the optical conductivity
of graphene beyond the Dirac cone approximation.?®? For
pristine graphene, the dynamical polarization obtained from
the Lindhard function using the full w-band tight-binding

model is®?>%
& / K
2m)* Jpz

x Y feka

s,8'=+%

H(qvw) = -

nrlES(K)] —nr[E* (k + q)]
ES(k)— ES(K+q) +o+i8
(11

where the integral is over the Brillouin zone, g, = 2 is the
spin degeneracy, E* (k) = =%¢|¢y| — p is the energy dispersion
with respect to the chemical potential, where

: 3
e = 1 + 23572 cos (%kﬂ) , (12)

a = 1.42 A being the in-plane carbon-carbon distance, and the
overlap between the wavefunctions of the electron and the hole
is given by

1 S i|>
kg=-(1x£R et T2 272 . 13
el 2( e[e il vl (13

In the RPA, the response function of SLG due to electron-
electron interactions can be calculated as

I(q,w)

PR — (14)
1-V(gl(q,0)

x(q,w) =
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FIG. 3. (Color online) —ImII(q,w) for SLG in the clean limit for different values of wave vector q. Plots (a), (c), and (e) correspond to a
wave vector q along I'-K, whereas (b), (d), and (f) are of a q parallel to the I'-M direction. The angle 6 is defined in Fig. 2. In the numerical
integration of Lindhard function in Eq. (11), we use 2 x 10® Monte Carlo points (k) in the first Brillouin zone. The sample size of SLG used

in the numerical calculation of Kubo formula in Eq. (6) is 4096 x 4096.

where V(gq) = % is the Fourier component of the Coulomb
interaction in two dimensions, in terms of the background
dielectric constant «, and

e(q.0) =1 - V(g)Il(q,w), s5)

is the dielectric function of the system. We will be interested on
the collective modes of the system, which are defined from the

zeros of the dielectric function [¢(q,®) = 0]. The dispersion
relation of the collective modes is defined from

Ree(q,wp,) =1 — V(g)Rell(q,w,;) =0, (16)

which leads to poles in the response function (14). The
damping y of the mode is proportional to ImIl(q,w,;), and
it is given by

ImII(q,w,;)
%Ren((Lw)lw:ww

y = (17
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FIG. 4. (Color online) Density of states for SLG considering
different kind of disorder. The left inset shows a zoom of the DOS
near the Dirac point (E = 0), whereas the right-hand side inset shows
the disorder broadening of the Van Hove singularity at £ = ¢. The
numerical method used in the calculation of DOS is discribed in
Ref. 29, and the sample size of SLG is 4096 x 4096.

For MLG, the response function is calculated as (we use
g, = 0) (Ref. 9)

H3D(qsw)
x3p(q,0) = 1 ) (18)
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where d = 3.35A is the interlayer separation. Because we use
open boundary conditions in the stacking direction, we define
the form factor F (g) as

Nlayer
eali=Tld.

F(q) = (19)

N,
layer 1=l

The expression (18) assumes that the polarization of each
layer is the same, and it is exact in two different limits:
bilayer graphene and graphite. Notice that a similar effective
form factor has been used to study the loss function of
multiwall carbon nanotubes.** Equation (19) coincides with
the commonly used form factor for a multilayer system with
an infinite number of layers®*

F(Q)lNlayer‘)oo = Z e_q|l—l’|d’ (20)

I

where, in this last case, the periodicity ensures that F(g) is
independent of layer index /, with the asymptotic behavior
F(gq) = sinh(gd)/[cosh(gd) — 1] (Ref. 34).

A crucial issue is the value of the dielectric constant
« for each of the cases considered because it encodes the
screening due to high energy (o) bands which are not explicitly
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FIG. 5. (Color online) —ImII(q,w) for different kinds of disorder and for different values and orientation of the wave vector q. In all the
plots, the results using the Kubo formula Eq. (4) are compared to the Dirac cone approximation. The sample size of SLG is 4096 x 4096.
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FIG. 6. (Color online) —Imy(q,w) for the same values of q and disorder as in Fig. 5.

considered in our calculation. A good estimation for it can be
obtained from the expression®

k1 +1—(k; — De9F

K= T T o — De "

2y

where k| ~ 2.4 is the dielectric constant of graphite, L =
dyy + (Niager — 1) d is the total height of the multilayer system
in terms of the number of layers Ny and the height of a
monolayer graphene d,, &~ 2.8 A. As expected, Eq. (21) gives
k = 1 for SLG at ¢ — 0 and ¥ = « for graphite.

We notice that the accuracy of the numerical results for the
polarization function Eq. (10) is mainly determined by three
factors: the time interval of the propagation, the total number
of time steps, and the size of the sample. The maximum time
interval of the propagation in the time evolution operator is
determined by the Nyquist sampling theorem. This implies
that employing a sampling interval At = 7/ max; | E;|, where
E; are the eigenenergies, is sufficient to cover the full range
of energy eigenvalues. On the other hand, the accuracy of
the energy eigenvalues is determined by the total number of
the propagation time steps (N;) that is the number of the data
items used in the fast Fourier transform (FFT). Eigenvalues that
differ less than AE = /N, At cannot be identified properly.
However, since AE is proportional to N-' we only have to
double the length of the calculation to increase the accuracy by
the same factor. The statistic error of our numerical method is
inversely proportional to the dimension of the Hilbert space,*

and in our case (the single particle representation), it is the
number of sites in the sample. A sample with more sites in
the real space will have more random coefficients (a; ;) in the
initial state |@), providing a better statistical representation of
the superposition of all energy eigenstates.”

A similar algorithm has been successfully used in the
numerical calculation of the electronic structure and transport
properties of single-layer and multilayer graphene, such as the
density of states (DOS), or dc and ac conductivities.?*36-3
The main advantage of our algorithm is that different kinds of
disorders and boundary conditions can be easily introduced in
the Hamiltonian, and the computer memory and CPU time is
linearly proportional to the size of the sample, which allows us
to do the calculations on a sample containing tens of million
sites.

III. EXCITATION SPECTRUM OF SINGLE-LAYER
GRAPHENE

The particle-hole excitation spectrum is the region of the
energy-momentum space which is available for particle-hole
excitations. For noninteracting electrons, it is defined as the
region where ImIl(q,w), as given by Eq. (4) or Eq. (11),
is nonzero.’! The linear low energy dispersion relation of
graphene as well as the possibility for interband transitions lead
to a rather peculiar excitation spectrum for SLG as compared
to the one of a two-dimensional electron gas (2DEG) with
a parabolic band dispersion.*® Here we focus on undoped
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graphene (u = 0), for which only interband transitions are
allowed. In Fig. 3 we plot ImI1(q,w) for different wave vectors
at T =300 K (which is the temperature that we will use
from here on in our results). The first thing one observes is
the good agreement between the results obtained from the
Kubo formula Eq. (4), as compared to the Lindhard function
Eq. (11), which prooves the validity of our numerical method.
Furthermore, for the small wave vector used in Figs. 3(a)
and (b), the results are well described by the Dirac cone
approximation,'®!! but only at low energies, around w ~ vgq ,
where vp = 3at /2 is the Fermi velocity near the Dirac points.
In particular, the continuum approximation cannot capture the
peaks of ImIl(q,w) around w ~ 2¢. These peaks are related
to particle-hole excitations between states of the valence band
with energy E &~ —t and states of the conduction band with
energy E ~t, which contribute to the polarization with a
strong spectral weight due to the enhanced density of states at
the Van Hove singularities of the 7 bands (see Fig. 4).
Second, for larger wave vectors [Figs. 3(c)-3(f)] one
observes strong differences in the spectrum depending on
the orientation of ¢, the effect of which has been discussed
previously.?*3° If q is along the I'-K direction, there is a
splitting of the peak associated to the Van Hove singularity at
w ~ 2t. At low energies, we also observe a finite contribution
to the spectral weight to the left of the w & vgg peak for
momenta along the I'-M direction [plots Figs. 3(d) and
3(f)]. Finally, trigonal warping effects are important as we
increase the magnitude of |q| due to the deviation of the

PHYSICAL REVIEW B 84, 035439 (2011)

band dispersion with respect to the linear cone approximation.
As a consequence, the constant energy contours are not any
more circles around the Dirac points, but present a triangular
shape. The consideration of this effect leads to a redshift of the
o ~ vpq peak with respect to the Dirac cone approximation,
as seen clearly in Fig. 3(e).

Once we have discussed the clean case, we consider the
effect of disorder on the excitation spectrum as explained in
Sec. II. Two different kinds of disorder are considered: random
local change of on-site potentials and random renormalization
of the hopping, which correspond to the diagonal and off-
diagonal disorders in the single-layer Hamiltonian Eq. (2),
respectively. The former acts as a chemical potential shift
for the Dirac fermions (i.e., shifts locally the Dirac point)
and the later rises from the changes of distance or angles
between the p, orbitals. In Fig. 4 we show the DOS of SLG
for different kinds and magnitudes of disorder. The DOS
for clean graphene has been plotted by using the analytical
expression given in Ref. 40. The DOS of the disordered
systems are calculated by Fourier transform of the time-
dependent correlation functions?

1 oo .
ple) = — / ¢ (ol e M |g) di,
27 J_so

(22)

with the same initial state |¢) defined in Eq. (7). As shown in
Ref. 29, the result calculated from a SLG with 4096 x 4096
lattice sites matches very well with the analytical expression,
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FIG. 7. (Color online) Ree(q,w) for the same values of q and disorder as in Figs. 5 and 6.

035439-6



EXCITATION SPECTRUM AND HIGH-ENERGY PLASMONS ...

1.5 T —T— —T—T
(@) ABA ——SILG
— 2 layers
— 3 layers
10 L —— 5 layers
—— 10 layers
Q — 50 layers
—
SN
wn
@)
Qo5
0.0
0 1 2 3
Ent
0.10 T
A —SLG
0.08 — 2 layers
+ — 3 layers
— 5 layers
0.06 —— 10 layers |
— — 50 layers
s
—
\V-J/O 04
o
A
0.02 - e
0.00 L L
-0.2 0.2
LA A L A
14~ (e) ABA —SLG ]
—— 2 layers 1
12 B — 3 layers ]
L —— 5 layers ]
M —— 10 layers
=10 L ——50 layers ]
—_ L ]
SN
2 1
0.6 §
0'4-.|.|.|.|.|.|.|.
080 0.85 090 095 1.00 1.05 1.10 1.15 120
E/t

PHYSICAL REVIEW B 84, 035439 (2011)

1.5 T —T— —T—T
(b) ABC ——SIG
— 2 layers
— 3 layers
10 L —— 5 layers
—— 10 layers
Q — 50 layers
=
n
@)
Aos i
0.0 L 1 L 1 L L 1 L 1
-3 -2 -1 0 1 2 3
Ent
0.10 T T T T T T T T T
N\ (d) ABC — g6
0.08 — 2 layers
+ — 3 layers
— 5 layers
0.06 —— 10 layers |
— — 50 layers
s
—
;3/0 04
o
a
0.02 - e
0.00 L 1
-0.2 -0.1 0.0 0.1 0.2
E/t
LA A L A
14- (f) ABC —S1G b
—2 layers 1
12 B — 3 layers ]
L —— 5 layers
M ——— 10 layers
=10 L ——50 layers
—_ L ]
SN
8 i
0.6 [ -
0.4 L= 0 0 [ R R B
080 0.85 090 095 1.00 105 1.10 1.15 120
E/t

FIG. 8. (Color online) (a,b) Density of states of ABA- (left panels) and ABC-stacked (right panels) multilayer graphene. A zoom of the
DOS around the Dirac point (E = 0) is shown in (c¢,d), and around the Van Hove singularity (E = ¢) is shown in (e,f). The sample sizes of each
layer in MLG are 4096 x 4096 atoms in bilayer; 3200 x 3200 in trilayer; 2048 x 2048 in five layers; 1600 x 1600 in ten layers and 800 x 800

in 50 layers.

and here we use the same sample size in the disordered
systems. We consider that the on-site potential v; is random and
uniformly distributed (independently on each site i) between
—v, and 4-v,. Similarly, the in-plane nearest-neighbor hopping
t;; israndom and uniformly distributed (independently on sites
i,j) between t — ¢, and ¢ + #,. The main effect is a smearing
of the Van Hove singularity at £ = ¢, as observed in the
right-hand side inset of Fig. 4.

The effect of disorder is also appreciable in the noninter-
acting excitation spectrum of the system, as shown by Fig. 5.

A broadening of the w =~ vpg and w ~ 2t peaks is observed
in all the cases. Furthermore, disorder leads to a slight but
appreciable redshift of the peaks with respect to the clean
limit. This effect is more important for higher wave vectors,
as it can be seen in Figs. 5(c) and (d). Finally, the disorder
broadening of the peaks leads in all the cases to a transfer
of spectral weight to low energies (below w = vgq), as it is
appreciable in Figs. 5(a)-5(d).

The next step is to consider both disorder and electron-
electron interaction in the system. In the RPA, the response
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function is calculated as in Eq. (14). The results are shown
in Fig. 6, where —Imy(q,w) is plotted for the same wave
vectors and disorder used in Fig. 5. We observe that the Dirac
cone approximation (black line) captures well the low energy
region of the spectrum. However, the large peak at w ~ 2¢
cannot be captured by the continuum approximation. They
are due to a plasmon mode associated to transitions between
electrons in the saddle points of the 7 bands. Strictly speaking,
those modes cannot be considered as fully coherent collective
modes, as, for example, the low energy /g plasmon which is
present in doped graphene.’ For doped graphene, the acoustic
+/q plasmon is undamped above the threshold @ = vgq until it
enters the interband particle-hole continuum, when it starts to
be damped and decays into electron-hole pairs. However, the
7 plasmon, although it corresponds to a zero of the dielectric
function as it can be seen in Fig. 7, it is a mode which lies inside
the continuum of particle-hole excitations: —ImIl(q,w,;) > 0
at the w-plasmon energy w,;, and the mode will be damped
evenatg — 0. Inany case, itis a well defined mode which has
been measured experimentally for SLG and MLG.>® Coming
back to our results, notice that the height of the peaks is reduced
when the effect of disorder is considered, although the position
is unaffected by it. For small wave vectors, this mode is highly
damped due to the strong spectral weight of the particle-hole
excitation spectrum at this energy, as seen by the peak of
—ImII(q,w) at w = 2t in Figs. 3(a) and (b). The position of
the collective modes can be alternatively seen by the zeros
of the dielectric function Eq. (16), which is shown in Fig. 7.
Notice that the Dirac cone approximation (solid black lines in
Fig. 7) is completely insufficient to capture this high energy
 plasmon, which predicts always a finite Ree(q,w). As for
the polarization, we see that disorder leads to an important
smearing of the singularities of the dielectric function, as seen
in Fig. 7. Finally, we mention that the application of our method
to even higher wave vectors and energies as the ones considered
in the present work, should be accompanied by the inclusion
of local field effects (LFE) in the dielectric function, which are
related to the periodicity of the crystalline lattice.*' In fact, for
SLG and for wave vectors along the zone boundary between
the M and the K points of the Brillouin zone (see Fig. 2), the
inclusion of LFEs leads to a new optical plasmon mode at an
energy of 20-25 eV (Ref. 42).

IV. EXCITATION SPECTRUM FOR MULTILAYER
GRAPHENE

In the following, we study the excitation spectrum and
collective modes of MLG. For this, we consider not only the
Coulomb interaction between electrons on different layers,
but also the possibility for the carriers to tunnel between
neighboring layers, as described in Sec. II. The importance
of considering interlayer hopping has been already shown in
the study of screening properties of ML.G.* First, we see that
the results are sensitive to the relative orientation between
layers. In Fig. 8 we show the density of states for ABA- and
ABC-stacked MLG (see Fig. 1 for details on the difference
between those two orientations). As seen in Figs. 8(c) and
(d), all the MLGs present a finite DOS at E = 0, contrary
to SLG which has a vanishing DOS at the Dirac point. The
main difference between the two kinds of stacking is that
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FIG. 9. (Color online) Band structure of ABA- and ABC-stacked
trilayer graphene. Left panel: The red dashed lines indicate the
position of the jump in DOS of ABA-stacked trilayer graphene at
|E| ~ 0.19z. Right panel: The red dashed lines indicate position of
the peaks in DOS of ABC-stacked trilayer graphene at £ = 0 and
|E| ~ 0.121.

for ABC there is a central peak together with a series of
satellite peaks around E = 0 [Fig. 8(d)], whereas for ABA the
DOS follows closer the behavior of the SLG [Fig. 8(c)]. The
different structure in the DOS can be understood by looking
at Fig. 9, where we show the low energy band structure of a
trilayer graphene with ABA [Fig. 9(a)] and ABC [Fig. 9(b)]
orientations. The different jumps and peaks in the DOS of
Figs. 8(c) and (d) are associated to the regions of the band
dispersion marked by the horizontal red lines of Fig. 9, the
energy of which depends on the values of the tight-binding
parameters associated to interlayer tunneling (y; and y3 in our
case). In the two cases, we observe a splitting of the Van Hove
peak, as seen in Figs. 8(e) and (f). Notice that when we have
a high number of layers (e.g., above ten layers), there is a
weak effect on adding a new graphene sheet to the system, as
it can be seen from the similar DOS between the 10- and the
50-layers cases of Fig. 8.

In Fig. 10 we show the noninteracting (left panels) and
the RPA (right panels) polarization function of MLG, for
systems made of 3, 5, and 20 layers, and for ABA and ABC
stacking. For the spectrum in the absence of electron-electron
interaction, as shown in Figs. 10(a), (c), and (e), one does not
observe any specific difference in the two spectra apart from
different intensities depending on the kind of stacking and on
the number of layers considered for the calculation. On the
other hand, the energy of the m plasmon of ABC samples
is redshifted with respect to the ABA stacking. This can be
see from the relative position of the peaks of —Imy(q,w)
in Figs. 10(b), (d), and (e). Also, notice that the separation
between the two peaks grows with the number of layers, and
for a 20-layers system, the difference can be of the order of 1
eV, as it can be seen in Fig. 10(f). In the following and unless
we say the opposite, all the results will be calculated for the
more commonly found ABA stacking.

For a more clear understanding about the evolution of the
particle-hole excitation spectrum with the number of layers,
we plotin Fig. 11(a) the imaginary part of I1(q,®) for SLG and
MLG of several number of layers, and compare the results to
the polarization obtained using the Dirac cone approximation.
Itis very important to notice that multilayer graphene presents
some spectral weight at low energies as compared to graphene,
which can be seen from the finite contribution of ImIT(q,w)
that appears to the left of the big peak of the graphene polariz-
ability at w = vgg (~ 1 eV for the used parameters), in terms
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FIG. 10. (Color online) Dynamical polarization and response function of ABA- and ABC-stacked multilayer graphene. The number of

layers are three layers in (a,b), five layers in (c,d) and 20 layers in (e,f). The size of each layer is 3600 x 3600 atoms for trilayer (a,b);
3200 x 3200 atoms for five-layer samples (c,d), and 1600 x 1600 atoms for 20 layer (e,f).

of the Fermi velocity near the Dirac point, vg = 3at /2. This
is due to the low energy parabolic-like dispersion of bilayer
and multilayer graphene, as compared to the linear dispersion
of single-layer graphene, and it can only be captured by
considering the interlayer hopping contribution to the kinetic
Hamiltonian Eq. (3). Furthermore, the spectrum presents a
series of peaks for w ~ vgg, the number of which depends on
the number of layers. This is due to the fact that as we increase
the number of coupled graphene planes, the number of bands
available for particle-hole excitations also grows leading to
peaks at different energies for a given wave vector.**

The difference between SLG and MLG is also relevant in
the low energy region of the dielectric function, as it can be seen
in Fig. 11(b). In fact, the @ — 0 limit of Ree(q,w) calculated
within the RPA grows with the number of layers. Moreover,
as we have discussed above, the zeros of Ree(q,w) signal the
position of collective excitations in the system (plasmons). In
Fig. 11(b) we see that Ree(q,w), for the small wave vector
used, crosses 0 for MLG, revealing the existence of a solution
of Eq. (16), but not so for SLG, as it was pointed out in Ref. 23.
However, we emphasize that the very existence of solutions
for the Ree(q,w) = 0 equation for MLG does not imply the
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FIG. 11. (Color online) (a) ImIT1(q,w) for SLG and MLG. The results for SLG obtained from the Kubo formula Eq. (4) are compared to
those obtained from the Lindhard function Eq. (11), and to the Dirac cone approximation. (b) Ree(q,w) for SLG and MLG and comparison to

the Dirac cone approximation, for the same value of ¢ as in (a).

existence of long-lived plasmon modes. In fact, as we have
already discussed in Sec. III, these modes disperse within
the continuum of particle-hole excitations [ImII(q,w,;) # 0,
where ), is the solution of Eq. (16)], so they will be Landau
damped and will decay into electron-hole pairs with a damping
given by Eq. (17). Furthermore, we remember that for a given
wave vector, the energy of the mode is controlled by the
background dielectric constant «, as given by Eq. (21). For
the systems under consideration, « changes between 1 (for
SLG) and 2.4 (for graphite). The value of «, together with

the form factor Eq. (19) that takes into account the interlayer
Coulomb interaction, fix the position of the modes in each
case.

The effect of disorder in MLG is considered in Fig. 12,
where we show the polarization function of a 20-layer
graphene system for different kinds of disorder. As in the SLG,
we find that disorder leads to a slight redshift of the peaks of the
noninteracting spectrum [Figs. 12(a) and (b)], together with a
smearing of the peaks at w ~ vpq and w ~ 2¢. On the other
hand, the interacting polarization function presents a reduction
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FIG. 12. (Color online) Dynamical polarization and response function of ABA-stacked 20-layer graphene with disorders. The sample size

of each layer is 1600 x 1600.
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FIG. 13. (Color online) Loss function —Iml/e(q,w) for SLG
and MLG, which is proportional to the spectrum obtained by EEL
experiments (Ref. 3). We have used the same ¢q as in Fig. 11.

of the intensity of the plasmon peak due to disorder, as seen in
Figs. 12(c) and (d), also in analogy with the SLG case.

V. DISCUSSION AND COMPARISON TO
EXPERIMENTAL RESULTS

In this section we compute quantities which are directly
comparable to recent experimental results on SLG and MLG.
We start by calculating the loss function —Im1/e(q,w), which
is proportional to the spectrum measured by EELS. Our results,
shown in Fig. 13, are in good agreement with the experimental
data of Ref. 3: as in the experiments, we observe a redshift of
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the plasmon peak as one decrease the number of layers, as well
as an increase of the intensity with the number of layers. Notice
that, due to finite size effects, there is an infrared cutoff for the
wave vectors used in our calculations which prevents reaching
the long wavelength limit. In Fig. 13 we show the results for
the smallest wave vector available, and we emphasize that the
peaks will be further shifted to the left for smaller values of g.
A further redshift of the peaks would be obtained beyond RPA,
as it has been reported for single-layer and bilayer graphene,
where excitonic effects have been included.?

We have also used our method to study the IXS experiments
of Reed et al.’ In Figs. 14(a) and 14(b) we plot the imaginary
part of the noninteracting polarization function for SLG and
MLG, for two values of g similar to the ones used in Ref. 5.
As we have discussed in Sec. IV, interlayer hopping leads
to a finite contribution to the spectral weight in the low
energy region of MLG as compared to the SLG spectrum.
Notice that the number of peaks at this energy w = vpgq
scales with the number of accessible bands and therefore
with the number of layers. We emphasize that this effect
is not included by the usually employed approximation of
considering MLG as a series of single-layers of graphene,
only coupled via direct Coulomb interaction.’ Without the
possibility of interlayer hopping, the polarization function of
graphene and graphite are, apart from some multiplicative
factor, the same. As we have seen in Sec. IV, this simplification
does not capture the low energy part of the spectrum, with some
finite spectral weight due to low energy interband transitions
between parabolic-like bands.

At an energy of the order of w ~ 2r one observes the
peak due to transitions between electrons from the Van Hove
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FIG. 14. (Color online) (a,b) Noninteracting polarization function ImII(q,®) and (c,d) RPA response function Imy (q,w) for SLG and
MLG, for two different wave vectors. The wave vectors are chosen as in Ref. 5.
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FIG. 15. (Color online) Modulus of the screened fine structure
constant |o*|, calculated from Eq. (23), for SLG and MLG of
a different number of layers. The inset is a zoom for the more
experimentally relevant w — 0 region of the spectrum (see text).
|a*| & 0.6 for SLG, whereas this value is highly reduced for MLG:

|a*| = 0.3 for a 20-layers sample in our numerical calculation, which
has a behavior very similar to graphite.

singularity of the occupied band to the singularity of the
empty band. For SLG, the peak is split into two peaks if the
wave-vector points in the I'-K direction (as it is the case here),
the separation of which increases with the modulus g = g, .
However, the amplitude of these peaks is highly suppressed
from SLG to MLG. Finally, one observes in Fig. 14(b) that
for higher values of g, as the one used here, there is a
redshift of the peak of ImIl(q,w) at the energy w & vggq
with respect to the Dirac cone approximation. This is due
to trigonal warping effects, which are beyond the continuum
approximation. Summarizing, we find two effects that lead
to a global contribution to the polarization at low energies:
one is the contribution to the spectral weight due to interlayer
hopping in MLG, and the other is the redshift of the peaks at
o = vpq due to trigonal warping effects. Notice that because
we are studying the noninteracting polarization function, no
excitonic effects are present in the results of Figs. 14(a) and (b).

Once the polarization function I1(q,w) is known, we
compute the response function x(q,w) at the RPA level, as
shown in Figs. 14(c) and (d). Again, we find a redshift of the
position of the peaks as we decrease the number of layers.
The different position of the peaks is due to the different
contribution of interlayer electron-electron interaction for each
case, as well as to the different value of k as given by Eq. (21).
Our results agree reasonably well with those of Ref. 5.

Finally, we calculate the renormalization of the fine struc-
ture constant & = e?/vg due to dynamic screening associated
to the interband transitions from the valence band. For this,
and in analogy with Ref. 5, we define

a’(q.0) = (23)

e(q,w)’
The results for the modulus |o¢*| for SLG and MLG are
shown in Fig. 15. In this plot we have used the value of the
Fermi velocity valid near the Dirac point (i.e., vg = 3at/2).
Therefore, we emphasize that these results should be reliable
only at low energies. At w — 0 and for the smallest wave
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vector we can access (g = 0.2a~"), RPA predicts |a*| &~ 0.6
for SLG, which is considerably higher than the value estimated
in Ref. 5: |a*| & 0.15. However, the results that we obtain for
MLG are much closer to this value: we find that |o*| &~ 0.3
for graphite, only slightly higher (a factor of 2) than the
experimental results of Ref. 5, which are actually obtained
from graphite.

VI. CONCLUSION

In conclusion, we have studied the excitation spectrum of
single-layer and multilayer graphene using a full 7 -band tight-
binding model in the random phase approximation. We have
found that, for MLG, the consideration of interlayer hopping is
very important to properly capture the low energy region (@ ~
vpq) of the spectrum. This, together with trigonal warping
effects, leads to a finite contribution to the spectral weight at
low energies as well as a redshift of the peaks with respect to
the Dirac cone approximation. We have also studied the high
energy plasmons which are present in the spectrum of SLG and
MLG at an energy of the order of w ~ 2¢ &~ 6 eV and which are
associated to the enhanced DOS at the Van Hove singularities
of the 7 bands. The energy of the = plasmon depends also on
the orientation between adjacent layers, and we find that, for
a given wave vector, the energy of the mode for ABC-stacked
MLG is redshifted with respect to the corresponding energy
of ABA ordering. This difference is higher as we increase the
number of graphene layers of the system.

The effect of disorder has been considered by the inclusion
of a random on-site potential and by a renormalization of
the nearest neighbor hopping. Both kinds of disorder lead to a
redshift of the w & vpq and w =~ 2¢ peaks of the noninteracting
excitation spectrum and to a smearing of the Van Hove
singularities. The position of the m plasmons is unaffected
by disorder, although the height of the absorption peaks is
reduced as compared to the clean limit.

Finally, we have compared our results to some recent
experiments. Our calculations for the loss functionIm1/e(q,w)
show a redshift of the SLG mode with respect to graphite,
and compare reasonably well with experimental EELS data.>*
Furthermore, we also obtain good agreement with the IXS
results for the response function obtained in Ref. 5. We obtain
a static dielectric function which grows with the number of
layers of the system. In the long wavelength and @ — 0 limit,
the dynamically screened fine structure constant is found to be
highly reduced from graphene to graphite. The value that we
find for a MLG in the RPA, without considering any excitonic
effects, is about two times larger than the one estimated in
Ref. 5 for graphene. More accurate results could be obtained
going beyond single-band RPA,*> which is beyond the scope
of this work.
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