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In this review, we discuss the decoherence and thermalization of a quantum spin system interacting
with a spin bath environment, by numerically solving the time-dependent Schrödinger equation of
the whole system. The effects of the topologic structure and the initial state of the environment on
the decoherence of the two-spin and many-spin system are discussed. The role of different spin-
spin coupling is considered. We show under which conditions the environment drives the reduced
density matrix of the system to a fully decoherent state, and how the diagonal elements of the
reduced density matrix approach those expected for the system in the microcanonical or canonical
ensemble, depending on the character of the additional integrals of motion. Our demonstration does
not rely on time-averaging of observables nor does it assume that the coupling between system
and bath is weak. Our findings show that the microcanonical distribution (in each eigenenergy sub-
space) and canonical ensemble are states that may result from pure quantum dynamics, suggesting
that quantum mechanics may be regarded as the foundation of quantum statistical mechanics. Fur-
thermore, our numerical results show that a fully decoherent quantum system prefers to stay in an
equilibrium state with a maximum entropy, indicating the validity of the second law of thermody-
namics in the decoherence process.
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1. INTRODUCTION

The manner in which a quantum system becomes effec-
tively classical is of great importance for the foundations

of quantum physics. It has become increasingly clear that
the symptoms of classicality of quantum systems can be
induced by their environments.1

Intuitively, we expect that by turning on the interac-
tion between the quantum system and the environment,
the fluctuations in the environment will lead to a reduc-
tion of the coherence in the quantum system. This process
is called decoherence.2–11 The existence of decoherence in
the quantum system represents a challenge for the real-
ization of quantum computation and quantum informa-
tion processing,12–15 which are expected to rely heavily
on quantum coherence. In general, there are two different
mechanisms that contribute to decoherence. If the environ-
ment is dissipative (or coupled to a dissipative system), the
total energy is not conserved and the whole system relaxes
to a stationary equilibrium state, for instance the thermal
equilibrium state. In this review, we exclude this class of
dissipative processes and restrict ourselves to closed sys-
tems in which a small quantum system is brought in con-
tact with a much larger environment. Then, decoherence
is solely due to the fact that the initial product state (wave
function of the quantum system times wave function of the
environment) evolves into an entangled state of the whole
system. The interaction with the environment causes the
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initial pure state of the quantum system to evolve into
a mixed state, described by a reduced density matrix,16

obtained by tracing out all the degrees of freedom of the
environment.2–11�17�18

The decoherence programme is supposed to explain the
macroscopic quantum superposition (“Schrödinger cat”)
paradox, that is, the inapplicability of the superposition
principle to the macroworld. The states that are “robust”
with respect to the interaction with the environment are
called pointer states.9 If the Hamiltonian of the quan-
tum system HS is a perturbation, relative to the interac-
tion Hamiltonian Hint, the pointer states are eigenstates of
Hint.

9–11 In this case, the pointer states are essentially “clas-
sical states,” such as states with definite particle positions
or with definite spin directions of individual particles for
magnetic systems. In general, these classical “Schrödinger
cat states,” being a product state of individual particles
forming the system, are not entangled.
On the contrary, if the interaction Hamiltonian Hint is

a perturbation, relative to the Hamiltonian of the quantum
system HS, the pointer states are eigenstates of HS.

9�11 In
this case, the pointer states are not necessary classical-
type states, they may be “quantum” states such as standing
waves, stationary electron states in atoms, tunneling-split
states for a particle distributed between several potential
wells, singlet or triplet states for magnetic systems, etc.11

This may explain, for example, that one can observe lin-
ear atomic spectra—the initial states of an atom under the
equilibrium conditions are eigenstates of its Hamiltonian
and not arbitrary superposition thereof. Some less trivial
pointer states have been found in computer simulations
of quantum spin systems for some range of the model
parameters.20�21 In fact, the evolution to equilibrium of
quantum spin systems is still an open issue. Recently,
the effect of an environment of N � 1 spins on the
entanglement of quantum spin systems has attracted much
attention.20–42

Furthermore, recent simulation results of quantum spin
systems show that different statistical ensembles such as
the microcanonical (per eigenenergy subspace) and the
canonical ensemble, could arise from the distribution of
these pointer states (eigenstates) in the mixed state.26 This
direct connection of quantum dynamics and statistical

Shengjun Yuan received the Ph.D. degree in 2008 from University of Groningen, the
Netherlands, for work on relaxation and decoherence in quantum spin systems. He is cur-
rently a postdoctoral researcher at the Institute for Molecules and Materials, Radboud Uni-
versity of Nijmegen, the Netherlands. His research interests include quantum spin systems,
graphene, quantum decoherence, quantum transport, simulation of quantum phenomena,
computer simulation methods in general.

mechanics gives an explanation of a basic postulate in sta-
tistical mechanics: a generic “system” that interacts with
a generic environment evolves into a state described by
the canonical ensemble. Experience shows that this is true
but a detailed understanding of this process, which is cru-
cial for a rigorous justification of statistical physics and
thermodynamics, is still lacking.43–64 In particular, in this
context the meaning of “generic” is not clear. The key
question is to what extent the evolution to the equilibrium
state depends on the details of the dynamics of the whole
system.
Earlier demonstrations of the fact that the system can be

in the canonical ensemble state are based on the Ergodic
averages, that the expectation values of the dynamical vari-
ables of the system approach their values for the subsystem
that is in the thermal equilibrium state,43–46 or do not con-
sider the dynamics of the system but assume that the state
of the whole system has a special property called “canon-
ical typicality,”47–53 There are two basic assumptions in
the derivation of the canonical typicality, one is that the
whole system is in the microcanonical ensemble, another
is that the interaction between the system and the environ-
ment is so small that it can be neglected. The theory of
the canonical typicality is kinetic rather than dynamic, and
it is yet unclear under which conditions the whole system
will evolve into the region in Hilbert space where its sub-
systems are in the thermal equilibrium state.47 A very dif-
ferent setting to study nonequilibrium quantum dynamics
is to start from an eigenstate of some initial Hamiltonian
and push the system out of this state by a sudden change
of the model parameters.54–60 To the best of our knowl-
edge, it has not yet been shown that this approach leads to
the establishment of the canonical equilibrium distribution.
We also want to draw attention to the fact that a demon-
stration of relaxation to the canonical distribution requires
a system with at least three different eigenenergies because
a diagonal density matrix of a two-level system can always
be represented as a canonical distribution.61�62

In this review, we focus on recent results concern-
ing the decoherence and thermalization in quantum spin
systems.20�21�23–26 In Section 2, we give a general theory
about decoherence and thermalization, and introduce sev-
eral quantities that measure the effect of decoherence and
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thermalization. In Section 3, we introduce the quantum
spin model and the methods used in the numerical sim-
ulation. In Section 4, we focus on the decoherence of a
two-spin quantum system, and consider the effect of dif-
ferent topological structures and different types of spin-
spin coupling. In Section 5, we discuss how a Heisenberg
two-spin system evolves to the ground state. In Section 6,
we consider the decoherence of many-spin systems. We
show under which conditions the environment drives the
reduced density matrix of the system to a fully decoherent
state, which is described by the microcanonical distribu-
tion per eigenenergy subspace. In Section 7, by intro-
ducing the energy dissipation of the many-spin system,
we show that the diagonal elements of the reduced den-
sity matrix approach those expected for the system in the
canonical ensemble. Section 8 contains the conclusion and
a brief discussion about the second law of thermodynamics
in quantum systems.

2. GENERAL THEORY

In general, the state of a closed quantum system is
described by a density matrix65�66 �. The state of a quan-
tum system interacting with an environment is represented
by the reduced density matrix ��t�, obtained by tracing
out all the degrees of freedom of the environment. Deco-
herence of the quantum system means that the amplitude
of the off-diagonal terms in the reduced density matrix
become smaller, and full decoherence corresponds to all
off-diagonal terms being zero. Here we consider the case
that the interaction Hamiltonian Hint is a perturbation, but
not necessary very small, relative to the Hamiltonian of
the quantum system HS, and the reduced density matrix
of the quantum system is represented in its energy eigen-
states. The decoherence of the quantum system can also be
monitored by the time dependence of the quadratic entropy
SS�t� = 1− Tr�2�t� and the Loschmidt echo (reduced
fidelity)67–72 L�t�= Tr���t��0�t��, where �0�t� is the den-
sity matrix for Hint = 0.
The microcanonical ensemble is a mixed state where all

accessible eigenstates have equal weight. The microcanon-
ical distribution per eigenenergy subspace is characterized
by a density matrix that is diagonal with respect to the
eigenstates of the system Hamiltonian, and the diagonal
elements which belong to the degenerate energy eigen-
states are equal. A state with microcanonical distribution
per eigenenergy subspace is a microcanonical ensemble if
it has only one accessible eigenenergy.
The canonical ensemble is a mixed state where the

diagonal elements take the form exp�−�Ei�, � = 1/kBT
is proportional to the inverse of the temperature T
(kB is Boltzmann’s constant) and the Ei’s denote the
eigenenergies.
The distribution of the state of a quantum system is the

microcanonical or canonical ensemble only if it is in a
fully decoherent state.

The time evolution of a closed quantum system is
governed by the time-dependent Schrödinger equation
(TDSE).65�66 If the initial density matrix of an isolated
quantum system is non-diagonal, then, according to the
TDSE, its density matrix remains nondiagonal and never
approaches the thermal equilibrium state with the canon-
ical or microcanonical distribution. Therefore, in order to
thermalize the system S, it is necessary to have the system
S interact with an environment (E), also called the heat
bath. Thus, the Hamiltonian of the whole system (S+E)
takes the form H =HS+HE+HSE, where HS and HE are
the system and environment Hamiltonian, respectively, and
HSE describes the interaction between the system and the
environment.
The state of the system S is described by the reduced

density matrix
��t�≡ TrE�S+E�t� (1)

where �S+E�t� is the density matrix of the whole system
at time t and TrE denotes the trace over the degrees of
freedom of the environment.
The coherence of the system is conveniently charac-

terized by ��t�, which is a global measure for the size
of the off-diagonal terms of the reduced density matrix,
defined by

��t�=
√√√√n−1∑

i=1

n∑
j=i+1

��ij�t��2 (2)

Here n denotes the dimension of the Hilbert space of sys-
tem S and �ij�t� is the matrix element �i� j� of the reduced
density matrix � in the representation that diagonalizes HS.
If ��t�= 0 the system is in a state of full decoherence.
The difference between the state ��t� and a micro-

canonical distribution per eigenenergy subspace can be
characterized by ��t� (measure of decoherence) and ��t�
(measure of the difference between the diagonal terms
corresponding to the degenerate eigenstates), which is
defined by

��t�=
√√√√n−1∑

i=1

n∑
j=i+1

��ii�t�−�jj�t��2	�Ei−Ej� (3)

The system is in the microcanonical distribution per energy
subspace if and only if ��t�= 0 and ��t�= 0

The system S is in its thermal equilibrium state only if

the reduced density matrix takes the form

�̂≡ e−�HS/TrSe
−�HS (4)

where TrS denotes the trace over the degrees of freedom
of the system S. The difference between the state ��t� and
the canonical distribution �̂ is represented by ��t� and
	�t�, defined by

	�t�=
√

n∑
i=1

(
�ii�t�− e−b�t�Ei

/ n∑
i=1

e−b�t�Ei

)2

(5)
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with

b�t�=
∑

i<j�Ei �=Ej
�ln�jj�t�− ln�ii�t��/�Ej −Ei�∑

i<j�Ei �=Ej
1

(6)

As the system relaxes to its canonical distribution both
��t� and 	�t� vanish, b�t� converging to �.

3. QUANTUM SPIN SYSTEM AND
NUMERICAL METHOD

Most theoretical investigations of decoherence have been
carried out for oscillator models of the environment for
which powerful path-integral techniques can be used to
treat the environment analytically.17�18 On the other hand,
it has been pointed out that a magnetic environment,
described by quantum spins, is essentially different from
the oscillator model in many aspects.19 For the simplest
model of a single spin in an external magnetic field, some
analytical results are known.19 For the generic case of
two and more spins, numerical simulation20–26 is the main
source of theoretical information.
A generic quantum spin model (see Fig. 1) can be

described by the Hamiltonian H =HS+HE+HSE where

HS =−
NS−1∑
i=1

NS∑
j=i+1

∑
=x�y�z

J 
i�jS


i S


j (7)

HE =−
N−1∑
i=1

N∑
j=i+1

∑
=x�y�z

�
i�j I


i I


j (8)

HSE =−
NS∑
i=1

N∑
j=1

∑
=x�y�z

�
i�jS


i I


j (9)

Here the S’s and I’s denote the spin-1/2 operators of
the system and environment respectively (we use units

Fig. 1. A typical configuration of a quantum spin system surrounded
by a quantum spin bath (NS = 4 and N = 18). The quantum spin system
consists of four spin 1/2 particles, with orientation spin-up or spin-down.
The bath spins are in a complicated random superposition state for which
the expectation values �Sx�, �Sy� and �Sz� of each spin are all zero.

such that � and kB are one). An analytic solution of the
TDSE can only be obtained for very special choices of the
exchange integrals J 

i�j , �

i�j and �

i�j but it is straightfor-
ward to solve the TDSE numerically for any choice of the
model parameters.
The state, that is the density matrix ��t� of the whole

system at time t, is completely determined by the choice
of the initial state of the whole system and the numerical
solution of the TDSE. In this review, the initial state of the
whole system (S+E� is a pure state. This state evolves in
time according to

���t�� = e−iHt���0�� =
nS∑
i=1

n∑
p=1

c�i�p� t��i� p�

where the states ��i� p�� denote a complete set of orthonor-
mal states. In terms of the expansion coefficients c�i�p� t�,
the reduced density matrix reads

��t�i�j = TrE
n∑

p=1

n∑
q=1

c∗�i� q� t�c�j�p� t��j�p��i� q�

=
n∑

p=1

c∗�i� p� t�c�j�p� t� (10)

which is easy to compute from the solution of the TDSE.
We monitor the effects of decoherence by computing the
matrix elements of the reduced density matrix ��t� of the
quantum system. As explained earlier, in the regime of
interest ��� 	 �J �, the pointer states are expected to be
the eigenstates of the quantum systems. Hence, we com-
pute the matrix elements of the density matrix in the basis
of eigenvectors of the quantum system. We also com-
pute the time dependence of the quadratic entropy SS�t�=
1−Tr�2�t� and the Loschmidt echo (reduced fidelity)67–72

L�t�= Tr��0�t���t��, where �0�t� is the density matrix for
HSE = 0
 Another quantity of interest that can be extracted
from the solution of the TDSE is the local density of states
(LDOS)

LDOS�E� ≡ 1
2�

∫ +


−

dt e−iEt���0��e−iHt���0��

=
D∑

k=1

����0���k��2	�E−Ek� (11)

where D = n+nS, ���k��, and �Ek� denote the dimension
of the Hilbert space, the eigenstates and eigenvalues of
the whole system, respectively. The LDOS is “local” with
respect to the initial state: It provides information about
the overlap of the initial state and the eigenstates of H .
The notation to specify the initial state is as follows:

(1) �GROUND�S is the ground state or a random super-
position of all degenerated ground states of the system;
(2) ˜�GROUND�S is the state which has the energy close
but not equal to that of the ground state;

892 J. Comput. Theor. Nanosci. 8, 889–911, 2011
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(3) �UU �S is a state in which all spins of the system are
up, meaning that in this state, the expectation value of
each spin is one;
(4) �UD�S is a state in which two nearest-neighbor spins
of the system are antiparallel implying that in this state,
the correlation of their z-components is minus one;
(5) ˜�UD�S is a state close to �UD�S, but the correlation of
their z -components is larger than minus one;
(6) �RR�S denotes the product state of random superposi-
tions of the states of the individual spins of the system;
(7) �RANDOM�S denotes a random superposition of all
possible basis states.

The same notation is used for the spins in the environ-
ment, the subscript S being replaced by E.
As we report results for many different types of spin

systems it is useful to introduce a simple terminology
to classify them according to symmetry and connecti-
vity. The terms “XY,” “Heisenberg,” “Heisenberg-type,”
“Ising,” “Ising-type” and Ising± system refer to the fol-
lowing cases:
(1) XY: J x

i� j = J
y
i� j = J and J z

i� j = 0;
(2) Heisenberg: J x

i� j = J
y
i� j = J z

i� j = J �
(3) Heisenberg-type: Ji� j are uniform random in the range
�−�J �� �J ��;
(4) Ising: J x

i� j = J
y
i� j = 0 and J z

i� j = J ;
(5) Ising-type: J x

i� j = J
y
i� j = 0 and J z

i� j are uniform random
in the range �−�J �� �J ��;
(6) Ising±: J x

i� j = J
y
i� j = 0 and J z

i� j are random −�J � or �J �.

The same terminology is used for the Hamiltonian HE

of the environment and for the interaction Hamiltonian
HSE. In our model, all the spins of the system interact with
each spin of the environment. To characterize the con-
nectivity K of the spins within the system (environment),
we use the term “ring” (K = 2) for spins forming a one-
dimensional chain with nearest-neighbor interactions and
periodic boundary conditions, “square-lattice” (K = 4) or
“triangular-lattice” (K = 6) if the spins are located on a
two-dimensional square or triangular lattice with nearest-
neighbor interactions, and “spin glass” (K = N −1) when
all the spins within the system (environment) interact with
each other with a Heisenberg-type interaction.73�74

The time evolution of the whole system is obtained
by solving the TDSE for the many-body wave function
���t��, describing the system plus the environment.78–90

The numerical method that we use is described in
Ref. [78]. It is based on the numerically exact Chebyshev
polynomial decomposition of the operator U�t� = e−itH

It is very efficient and conserves the energy of the
whole system to machine precision. It is widely used
in the simulation of quantum spin systems, such as the
study of decoherence,20�21�23–26 the modeling of a quan-
tum computer,89 the propagation of the quantum spin
wave,91 and the study of stability of the quantum domain
wall,92 etc.

The simulation of the wave function is performed in the
spin-up and spin-down basis, and it is convenient to use
this basis to apply the Hamiltonian operator on the wave
vector, which is a basic operation in the Chebyshev poly-
nomial algorithm. Based on the wave function of the whole
system in the up-down basis, we first calculate the reduced
density matrix of the quantum system by tracing out the
degrees of freedom of the environment, then diagonalize
the Hamiltonian HS to get all the energy eigenvalues and
the corresponding eigenstates of the quantum system, and
finally transform the reduced density matrix from the up-
down basis to the energy eigenstate basis. With the reduced
density matrix we can calculate all the physical quantities
of the quantum system, such as the energy, the entropy, the
measure of decoherence � , the measure of the distribution
�, 	 and the effective inverse temperature b, etc.

4. DECOHERENCE OF A TWO-SPIN SYSTEM

4.1. A Two-Spin System

The quantum state of a two-spin system is completely
determined by its reduced 4×4 density matrix. Although
the reduced density matrix contains all the information
about the quantum system, it is often convenient to char-
acterize the state of the two-spin system by other quan-
tities such as the correlation functions �S1 · S2�, �Sz

1S
z
2�,

and �Sx
1S

x
2 �, the single-spin magnetizations �Sx

1 �, �Sx
2 �, and

M ≡ �Sz
1+Sz

2�, and the concurrence C.94�95 In Table I, we
show the values of these quantities for different states of
the two-spin system.
The concurrence, which is a convenient measure for the

entanglement of the two spins is defined as94�95

C���=max�0��1−�2−�3−�4� (12)

where the �i are the eigenvalues, in decreasing order, of
the Hermitian matrix

R≡
√√

��̃
√
� (13)

Here � is the reduced density matrix of central spin pairs
based on the standard basis �↑� �↑�, �↑� �↓�, �↓� �↑�,
�↓��↓�, and

�̃= ��y ⊗�y��
∗��y ⊗�y� (14)

Table I. The values of the correlation functions �S1 · S2�, �Sz
1S

z
2�,

�Sx
1S

x
2 �, the total magnetization M , the concurrence C and the magneti-

zation �Sz
1� for different states of the two-spin quantum system.

��� �S1 ·S2� �Sz
1S

z
2� �Sx

1S
x
2 � M C �Sx

1 �
��↑↓�− �↓↑��/√2 −3/4 −1/4 −1/4 0 1 0
��↑↓�+ �↓↑��/√2 1/4 −1/4 1/4 0 1 0
��↑↑�− �↓↓��/√2 1/4 1/4 −1/4 0 1 0
��↑↑�+ �↓↓��/√2 1/4 1/4 1/4 0 1 0
�↑↓� −1/4 −1/4 0 0 0 1/2
�↓↑� −1/4 −1/4 0 0 0 −1/2
�↑↑� 1/4 1/4 0 1 0 1/2
�↓↓� 1/4 1/4 0 −1 0 −1/2

J. Comput. Theor. Nanosci. 8, 889–911, 2011 893
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where

�y =
( 0 −i

i 0

)
and �∗ is the complex conjugate of �.
In fact, the concurrence C is a measure between the

state ��� and the state with the two spins flipped ��̃�:
C = �����̃�� (15)

The singlet state, � �� = ��↑� �↓�− �↓� �↑��/√2 is
unchanged under flipping two spins, therefore C = 1.
The triplet state � �� = ��↑� �↓�+ �↓� �↑��/√2 is also
unchanged under flipping two spins, so C = 1. For �↑� �↑�,
�↑� �↓�, �↓� �↑�, and �↓� �↓�, the state is totally different
if the two spins flip and then C = 0

In the case that the two spins are coupled by the

isotropic Heisenberg interaction, the Hamiltonian of the
system simplifies

HS =−JS1S2 (16)

and the four eigenstates of HS are given by

�T1� = � ↑↑� = �1�

�S� = � ↑↓�−� ↓↑�√
2

= �2�

�T0� =
� ↑↓�+� ↓↑�√

2
= �3�

�T−1� = � ↓↓� = �4�

(17)

satisfying

HS�S� = ES�S��HS�T1�0�−1� = ET�T1�0�−1� (18)

where ES = 3J /4 and ET =−J /4.
From Table I, it is clear that the singlet state �S� is the

most easily distinguished state as the two-spin system is
in the singlet state if and only if �S1 ·S2� =−3/4. To iden-
tify the other states, we usually need to know at least two
of the quantities listed in Table I. For example, to make
sure that the system is in the triplet state �T0�, the values
of �S1 ·S2� and �Sz

1S
z
2� should match with the correspond-

ing entries of Table I. Likewise, the two-spin system will
be in the state � ↑↑� if �S1 ·S2� = 1/4 and M = 1.
If the interaction between the Heisenberg quantum sys-

tem and the environment is isotropic, that is, if �
�x�
i� j =

�
�y�
i� j = �

�z�
i� j ≡ � for all i� j , then the Hamiltonian HSE is

simplified as

HSE =−��S1+S2� ·
N∑
j=1

Ij (19)

which leads to �HS�HSE�= 0. As shown in Ref. [24], if the
energy of the quantum system is conserved, then the deco-
herence process is determined by HSE, HE, the initial state
of whole system ���t0��, and the eigenstates of the quan-
tum system. In other words, in this case, L�t� and ���t��

do not depend on J , which means that the relative value
of �/J has no effect on the decoherence process. Further-
more, if we take the interactions between the environment
spins to be isotropic, that is, ��x�

i� j =�
�y�
i� j =�

�z�
i� j ≡�i�j for

all i� j , then the Hamiltonian

HE =−
N−1∑
i=1

N∑
j=i+1

�i�jIi · Ij (20)

commutes with HSE, and therefore HE has also no effect
on the decoherence process.
In fact, since �HS�HSE� = 0, the time evolution oper-

ator of the whole system e−iHt can be represented as
e−iHSte−i�HSE+HE�t 
 The initial state of the quantum system
can be represented as ���t0�� =

∑
k ak�k�, where ��k�� and

�Ek� are the eigenstates and corresponding eigenvalues of
the quantum system, that is, HS�k� = Ek�k�.

For an isolated quantum system (HSE = 0), the time
evolution of the density matrix of the quantum system is
given by

�0�t�=
∑
k� l

e−i�Ek−El�taka
∗
l �k��l� (21)

If the quantum system is coupled to a bath with initial state
��t0�, the state of the whole system at time t is given by

���t�� = e−iHt���t0��
= ∑

k

e−iEk take
−i�HSE+HE�t�k����t0�� (22)

As �HS�HSE�= 0, we have HSE�k����t0�� = �k�Mk���t0��
and hence, the state at time t becomes

���t�� =∑
k

ake
−iEk t�k���k�t�� (23)

where
��k�t�� ≡ e−i�Mk+HE�t���t0�� (24)

The density matrix �S+E�t� of the whole system is

�S+E�t� = ���t�����t��
= ∑

k� l

e−i�Ek−El�taka
∗
l �k���k�t���l���l�t�� (25)

and the reduced density matrix ��t� of the quantum
system is

��t� = TrE�S+E�t�

= ∑
k� l

e−i�Ek−El�taka
∗
l ��l�t���k�t���k��l� (26)

The Loschmidt echo (reduced fidelity) L�t� of the quantum
system can be calculated as

L�t� = Tr���t��0�t��

= Tr

[∑
k� l

e−i�Ek−El�taka
∗
l ��l�t���k�t���k��l�

×∑
m�n

e−i�Em−En�tama
∗
n�m��n�

]
= ∑

k� l

�ak�2�al�2��l�t���k�t�� (27)
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It is clear that if �HS�HSE�= 0, the decoherence process
is determined by the initial state of the quantum system
�ak� and the time evolution of ���k�t���. As shown in
Eq. (24), the ���k�t��� are determined by the initial state
of the bath ��t0�, the eigenstates ��k�� of the quantum
system, and the Hamiltonians HSE and HE. The eigenval-
ues �Ek� have no effect on the decoherence process. Thus,
multiplying HS by a constant does not change L�t� and the
diagonal elements of the reduced density matrix �S�t�. The
time evolution of the absolute value of the off-diagonal
elements

��S�t�kl� = �aka
∗
l ���l�t���k�t�� (28)

is independent of HS. This means that the relevant values
of the coupling between the system spins (J ) and between
the system and the environment (�) have no effect on the
decoherence process.
If �HS�HSE� = 0 and �HSE�HE� = 0, then, Eq. (24)

becomes
��k�t�� = e−iMkte−iHEt���t0�� (29)

and therefore we have

��l�t���k�t�� = ���t0��e−i�Mk−Ml�t���t0�� (30)

implying that ��S�t�kl� and L�t� do not depend on HE.
Our goal is to find under which conditions the quantum

system can evolve into a classical mixed state, that is, the
elements in the reduced density matrix satisfying

��S�t�kl� = 0 if k �= l

��S�t�kl� �= 0 if k = l
(31)

4.2. Decoherence Without Energy Dissipation

In previous work,23–26 it was shown that a frustrated envi-
ronment, such as described by a Heisenberg-type HE, can
enhance the decoherence of the quantum system. The typi-
cal results of the (full) decoherence in the Heisenberg two-
spin system without energy dissipation are the following.
In Figures 2 and 3, we show the time evolution of the

elements of the reduced density matrix ��t� for different
connectivity K with same �, or different � with same K,
for the case �HS�HSE�= 0.
If ��� ��

√
K, in the absence of interactions between

the environment spins (�
√
K = 0) and after the initial

decay, the quantum system exhibits long-time oscillations
(see Fig. 2(a)(left)). As shown in Refs. [20, 22], in the limit
of a large environment (N →
)

Re �23�t�=
[
1
6
+ 1−bt2

3
e−ct2

]
cos�t (32)

where b = N�2/4, c = b/2 and �= J −�. Equation (32)
clearly shows the two-step process, that is, after the ini-
tial Gaussian decay of the amplitude of the oscillations,
the oscillations revive and their amplitude levels of by a

Fig. 2. Time evolution of the real part of the off-diagonal element �23

(left panel) and the diagonal elements �11� 
 
 
 � �44 (right panel) of the
reduced density matrix of a Heisenberg two-spin system (J =−5), cou-
pled via an isotropic Heisenberg interaction HSE (� = −0
075 ) to a
Heisenberg-type environment HE (� = 0
1) with different connectivity:
(a) K = 0; (b) K = 2; (c) K = 4; (d) K = 6; (e) K =N −1. Reprinted with
permission from [25], S. Yuan et al., Phys. Rev. B 77, 184301 (2008).
© 2008, The American Physical Society.

factor of 1/3 (see Ref. [22]). Due to conservation laws,
this behavior does not change if we introduce an isotropic
Heisenberg Hamiltonian in the environment (���

i� j ≡� for
all , i and j), independent of K. This is also confirmed
by our numerical results (not shown).
If ��� ≈ �

√
K, the initial Gaussian decay of the

quantum system is not sensitive to the presence of a
Heisenberg-type environment HE, but there is a decay of
the amplitude of the long-living oscillations. The larger K
(see Figs. 2(b–e)(left)) or � (see Figs. 3(a, c)), the faster
the decay is.
If ��� 	 �

√
K and � is comparable with J , keep-

ing K fixed and increasing � smoothly changes the ini-
tial decay from Gaussian (fast) to exponential (slow).
The long-living oscillations are completely suppressed (see
Figs. 3(b, d)). For large �, the simulation data fits very
well to

��23�t�� =
1
2
e−AK���t (33)
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(c) K=N–1

(a) K=2 (b) K=2

(d) K=N–1

Fig. 3. Time evolution of the off-diagonal element �23 of the reduced density matrix of a Heisenberg two-spin system (J = −5), interacting with a
Heisenberg-type environment HE via an isotropic Heisenberg Hamiltonian HSE (� = −0
075 ) for the same geometric structures in the environment:
(a, b) K = 2 and (c, d) K = N − 1. The number next to each curve is the corresponding value of �. Reprinted with permission from [25], S. Yuan
et al., Phys. Rev. B 77, 184301 (2008). © 2008, The American Physical Society.

where AK��� is approximately linearly dependent on �:

AK���≈�ÃK (34)

and we find that Ã2 = 9
13 and ÃN−1 = 26
73.
Physically, the observed behavior can be understood as

follows.25 If ��� ≈ �
√
K, a bath spin is roughly equally

affected by the motion of the other bath spins and the sys-
tem spins. Therefore, each bath spin follows the original
dynamics, as if there was no coupling between bath spins.
This explains why the initial Gaussian decay is insensi-
tive to the values of K or �. After the initial decay, the
whole system is expected to reach a stationary state, but
because of the presence of Heisenberg-type interactions
between the bath spins, it leads to a decrease of the coher-
ence between the singlet and triplet states, and therefore a
new stationary state of the bath is established, suppressing
the long-living oscillations.
For larger K, the distance between two bath spins,

defined as the minimum number of bonds connecting the
two spins, becomes smaller. For instance, for K = 2, this
distance is �N − 2�/2, and for K = N − 1, it is zero. For
fixed � and larger K the fluctuations in the spin bath prop-
agate faster, and therefore the evolution to the stationary
state is faster. Furthermore, since the environment in our

model is a highly frustrated system, increasing the connec-
tivity K will increase the energy resolution of the eigen-
states, which makes the dynamics of the environment more
complicated. For fixed K, increasing the coupling strength
between the bath spins will speed up the dynamics of the
bath, that is, the larger � the faster will be the evolution to
the stationary state. However the coupling strength within
the environment should not be too large, because other-
wise the energy resolution in the bath will be too small to
lead the energy dissipation of the quantum system.
In the opposite case ��� 	�

√
K and � is comparable

with J , HSE is a small perturbation relative to HE and the
coupling between the bath spins is the dominant factor in
determining the dynamics of the bath spins. Therefore, by
increasing K or �, the bath spins will have less freedom
to follow the dynamics induced by the coupling to the
two system spins, the influence of the bath on the quan-
tum system will decrease, and the (exponential) decay will
become slower.
Here we have compared �

√
K to ��� to distinguish dif-

ferent regimes. As a matter of fact, �
√
K does not com-

pletely characterize the decoherence process, but it can be
used to characterize its time scale. Indeed, as shown in
Figure 4, for different

√
K and � but the same value of

�
√
K, the time evolution of L�t� is very similar. Note that
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Fig. 4. Time evolution of the Loschmidt echo L�t� of a Heisenberg two-spin system (J =−5), interacting with a Heisenberg-type environment HE via
a Heisenberg (� = −0
075) Hamiltonian HSE. The values of �

√
K are: (a) �

√
K = 0
1

√
N −1, (b) �

√
K = 0
15

√
N −1, (c) �

√
K = 0
25

√
N −1,

and (d) �
√
K = √

N −1. The different lines in each pannel correspond to different K. Solid (black) line: K = 2; dashed (red) line: K = 4; dotted
(green) line: K = 6, and dash-dotted (blue) line: K = N − 1. Reprinted with permission from [25], S. Yuan et al., Phys. Rev. B 77, 184301 (2008).
© 2008, The American Physical Society.

if �
√
K increases (compare Figs. 4(a) to (d)), the differ-

ences between the Loschmidt echoes increase.
According to the general picture of decoherence,9 for an

environment with nontrivial internal dynamics that is ini-
tially in a random superposition of all its eigenstates, we
expect that the quantum system will evolve into a stable
mixture of its eigenstates. In other words, the decoherence
will cause all the off-diagonal elements of the reduced den-
sity matrix to vanish with time. In the case of an isotropic
Heisenberg coupling between the quantum system and the
environment, HS commutes with the Hamiltonian H , hence
the energy of the quantum system is a conserved quan-
tity. Therefore, the weight of the singlet �S� in the mixed
state should be a constant (1/2), and the weights of the
degenerate eigenstates �T0�, �T−1� and �T1� are expected
to become the same (1/6). As shown in Figures 2(b–e)
(right), our simulations confirm that this picture is correct
in all respects.

4.3. Decoherence with Energy Dissipation

Now we consider the case that there is energy dissipation
of the quantum system, i.e., �HS�H� �= 0. First, instead of
considering a Heisenberg system-environment interaction

HSE as in Figures 2–3, we now take a Heisenberg-type HSE

in Figures 5–6, the other interactions like HS and HE are
the same as in Figures 2–3. From a direct comparison of
these results, it is clear that the roles of K and � are the
same, no matter whether the energy of the quantum sys-
tem is conserved or not. If ��� � �

√
K, in the presence

of anisotropic interactions between the quantum system
and the environment spins, the second step of the oscilla-
tions decay and finally disappear as K increases, even in
the absence of interactions between the bath spins. This
is because the anisotropic interactions break the rotational
symmetry of the coupling between the quantum system
and the environment which is required for the long-living
oscillations to persist. If ��� 	 �

√
K and � is compa-

rable with J , ��23�t�� can still be described by Eq. (33),
but now AK��� is no longer a linear function of �. This
is because the energy dissipation will change the weight
of each pointer state (eigenstate) in the final stable mix-
ture, which makes the time evolution of ��23�t�� more
complicated.
More results with Ising± interaction HSE are shown in

Figures 7 and 8. They give similar results as in the case
of a Heisenberg-type interaction HSE. The environments in
Figure 8 are not a spin glass, but an isotropic Heisenberg
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Fig. 5. Time evolution of the real part of the off-diagonal element �23

(left panel) and the diagonal elements �11� 
 
 
 � �44 (right panel) of the
reduced density matrix of a Heisenberg two-spin system (J =−5), cou-
pled via an isotropic Heisenberg-type interaction HSE (�=−0
15 ) to a
Heisenberg-type environment HE (�= 0
15) with different connectivity:
(a) K = 0; (b) K = 2; (c) K = 4; (d) K = 6; (e) K = N −1.

antiferromagnetic square or triangle lattice, which are also
frustrated systems.

4.4. Summary

In conclusion, with a frustrated spin-bath environment that
initially is in a random superposition of its basis states, a
pure quantum state of the quantum spin system will evolve
into a classical mixed state. If the interaction between the
quantum system and environment is much smaller than
the coupling between the spins in the quantum system, the
pointer states are the eigenstates of the quantum system.
Both of these observations are in concert with the gen-
eral picture of decoherence.9 Furthermore, if the energy of
the quantum system is conserved, the pointer states can
still be the eigenstates of the quantum system, independent
of the ratio of the system-bath coupling to the coupling
within the system. For the anisotropic spin-bath, changing
the internal dynamics of the environment (geometric struc-
ture or exchange couplings) may change the decoherence
of the quantum spin system from Gaussian to exponential
decay.

5. EVOLUTION TO THE GROUND STATE OF
A TWO-SPIN SYSTEM

To approach the ground state of a quantum system by cou-
pling it to a large quantum bath is not a trivial problem.
The interactions between the two quantum systems will
not only lead to the exchange of the energy, but also the
coherence of the wave function. In this section, we show
under which condition a two-spin system can approach
its ground or near-ground state. The affect of entangle-
ment and interaction symmetry during this evolution will
be discussed.
The interaction within the two-spin system will be fixed

as isotropic Heisenberg ferromagnet (J > 0) or antifer-
romagnet (J < 0). In the case of ferromagnet, there are
three degenerate ground states (triplet states) �T0�, �T1�
and �T−1�, whereas in the case of antiferromagnet it is
the singlet state �S�. Therefore when the quantum sys-
tem approaches the state which has the same energy as
the ground state(s), it can be a single eigenstate if the
ground state is non-degenerate, and it can also be an entan-
gled superposition (quantum) or mixed state (classic) if the
ground states are degenerate.
In order to let the two-spin system approach the ground

state, it is necessary to keep the environment at low tem-
perature. Instead of a classical mixture, we will prepare the
environment in a pure quantum state, in which the temper-
ature is not well defined. So we simply initialize the envi-
ronment in its ground or near-ground state to guarantee the
one-direction energy flow. As in Refs. [25, 26], this initial
ground state of the environment leads to a sharp local den-
sity of states in the whole system, and therefore the deco-
herence of the quantum system is much weaker comparing
to cases with random initial state of the environment.
The interactions between the two-spin system and the

spin bath will be set as Heisenberg-type or Ising-type.
Even in both cases the interactions of different orientations
(x, y and z) are not all the same, but they are totally differ-
ent: the Heisenberg-type HSE is still symmetrical because
the exchange interactions have the same random ampli-
tude in the three orientations, whereas the Ising-type HSE

is antisymmetric since the exchange interactions are totally
different between x�y� and z directions.
The interactions within the environment are fixed as

Heisenberg-type, which reduce the strength of the coher-
ence between the quantum system and the environment, as
we showed in the previous section and Refs. [23–26].

5.1. Symmetrical Coupling

We first consider the case that an antiferromagnetic (J < 0)
or ferromagnetic (J > 0) quantum system that interacts
with the Heisenberg-type environment via a Heisenberg-
type interaction.
In Figure 9, we present simulation results for the two-

spin correlation function (as a measure of the energy)

898 J. Comput. Theor. Nanosci. 8, 889–911, 2011



Delivered by Publishing Technology to: Rice University
IP: 101.78.211.234 On: Thu, 07 Jan 2016 19:13:59

Copyright: American Scientific Publishers

R
E
V
IE
W

Yuan Decoherence and Thermalization of Quantum Spin Systems

(c) K=N–1

(a) K=2 (b) K=2

(d) K=N–1

Fig. 6. Same as Figure 3 except that HSE is Heisenberg-type and � = 0
15. Reprinted with permission from [25], S. Yuan et al., Phys. Rev. B
77, 184301 (2008). © 2008, The American Physical Society.

for different values of the coupling strength (�� in the
environment. Clearly, in case (a), the relaxation in both
cases, antiferromagnetic and ferromagnetic, is rather slow
and confirming that there is relaxation to the ground state
requires a prohibitively long simulation. For cases (b)–(d),
the results are in concert with the intuitive picture of relax-
ation due to decoherence: The correlation shows the relax-
ation from the up-down initial state of the quantum system
to the ground or near-ground state. As for the antiferro-
magnetic quantum system (J < 0), the two-spin correlation
relaxes to a value of about 0.65–0.70, which is much fur-
ther away from the ground state value −3/4 than we would
have expected on the basis of the results of the ferromag-
netic quantum system. In the true ground state of the whole
system, the value of the two-spin correlation in case (b) of
J < 0 is −0
7232, and hence significantly lower than the
typical values, reached after relaxation. On the one hand, it
is clear (and to be expected) that the coupling to the envi-
ronment changes the ground state of the quantum system,
but on the other hand, our numerical calculations show
that this change is too little to explain the apparent dif-
ference from the results obtained from the time-dependent
solution. In case (e), the characteristic strength of the inter-
actions between the spins in the environment is of the
same order as the exchange coupling in the quantum sys-
tem (�≈ J ), a regime in which there clearly is significant
transfer of energy, back-and-forth, between the quantum
system and the environment.

In Figure 10, we show the diagonal elements of the
reduced density matrix for case (b). After reaching the
steady state, the nondiagonal elements exhibit minimum
fluctuations about zero and are therefore not shown. From
Figure 10, it is then clear that the quantum system relaxes
to the singlet state for the antiferromagnetic (J < 0) sys-
tem, and to a mixed state for the ferromagnetic system
(J > 0), as expected on intuitive grounds.

Fig. 7. Time evolution of the real part of the off-diagonal element
�23 of the reduced density matrix of a Heisenberg two-spin system
(J = −5), coupled via an Ising± interaction HSE (� = 0
075 ) to a
Heisenberg-type-ring environment HE (N = 16) with different range of �
(0�0
01�0
05�0
1�1�2�5�. The value of the corresponding � is indicated
by the number near each line.
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An important observation is that our data convincingly
shows that it is not necessary to have a macroscopically
large environment for decoherence to cause relaxation to
the ground state: A spin-glass with N = 14 spins seems
to be more than enough to mimic such an environment
for a two-spin system. This observation is essential for
numerical simulations of relatively small systems to yield
the correct qualitative behavior.
Qualitative arguments for the high efficiency of the spin-

glass bath were given in Ref. [23]. Since spin-glasses
possess a huge amount of states that have an energy close
to the ground state energy but have wave functions that
are very different from the ground state, the orthogonality
catastrophe, blocking the quantum interference in the quan-
tum system3�9 is very strongly pronounced in this case.
From the data for (b)–(d), shown in Figure 9, we con-

clude that the time required to let the quantum system
relax to a state that is close to the ground state depends on
the energy scale (�) of the random interactions between
the spins in the environment. As it is difficult to define the
point in time at which the quantum system has reached its
stationary state, we have not made an attempt to charac-
terize the dependence of the relaxation time on �.

5.2. Antisymmetric Coupling

In our simulation, the initial state of the quantum system is
�↑↓� and this state has total magnetization M = 0. For an
Ising-type interactionHSE of the envionment with a Heisen-
berg system HS, the magnetization M of the quantum sys-
tem commutes with the Hamiltonian of the whole system.

Fig. 8. Time evolution of the real part of the off-diagonal element �23 and concurrence of the reduced density matrix of a Heisenberg two-spin system
(J = −1), coupled via an Ising interaction ± HSE (� = 0
075 ) to an isotropic Heisenberg environment HE (� = −0
15, N = 16) with connectivity
K = 4 (square lattice) and K = 6 (triangle lattice).

Therefore, the magnetization of the quantum system is con-
served during the time evolution, and the quantum system
will always stay in the subspace with M = 0. In this sub-
space, the ground state for the antiferromagnetic quantum
system is the singlet state �S� while for the ferromagnetic
quantum system the ground state (in the M = 0 subspace)
is the entangled state �T0�. Thus, for the Ising-type interac-
tion HSE, starting from the initial state � ↑↓�, the quantum
system should relax to an entangled state, for both a ferro-
or antiferromagnetic quantum system, that is, at any time t,
the state of the whole system can be written as

���t�� = �S���S�t��+ �T0���T0
�t�� (35)

where ��S� and ��T0
� denote the states of the environment.

Let us denote by ���i�� a complete set of states of the
environment. Within the subspace spanned by the states
��S���i�� �T0���i��, the Hamiltonian can be written as

H = ES�S��S�+ET�T0��T0�+HE

− 1
2

N∑
j=1

��
�z�
1�j −�

�z�
2� j ���S��T0�+ �T0��S��Izj (36)

where we used �S�Sz
1�S� = �T0�Sz

1�T0� = �S�Sz
2�S� =

�T0�Sz
2�T0� = 0, �T0�Sz

1�S� = 1/2, and �T0�Sz
2�S� = −1/2.

Introducing a pseudo-spin � = ��x��y��z� such that
the eigenvalues +1 and −1 of �z correspond to the states
�S� and �T0�, respectively, Eq. (36) can be written as

H = ES−ET

2
+ ES+ET

2
� z+HE

− 1
2

N∑
j=1

��
�z�
1� j −�

�z�
2� j �I

z
j �

x (37)
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〉

〉

〉

〉

Fig. 9. Time evolution of the correlation ���t��S1 · S2���t�� of the
antiferromagnetic (top panel) and ferromagnetic (bottom panel) two-spin
quantum system with Heisenberg-type interaction HSE and environment
HE. The model parameters are �= 0
15 and (a) �= 0
075; (b) �= 0
15;
(c) � = 0
20; (d) � = 0
30; (e) � = 1. The number of spins in the
environment is N = 14.

showing that in the case of Ising-type HSE, the quantum
system with two spins is equivalent to the model Eq. (37)
with one spin.
From Eq. (37), it follows immediately that the Hamil-

tonian is invariant under the transformation �J ��z� →
�−J �−�z�. Indeed, the first, constant term in Eq. (37)
is irrelevant and we can change the sign of the second
term by rotating the speudo-spin by 180 degrees about the
x-axis. Therefore, if the initial state is also invariant under
this transformation, the time-dependent physical properties
will not depend on the choice of the sign of J , hence the
ferro- and antiferromagnetic system will behave in exactly
the same manner. In our case, the initial state can be writ-
ten as ��S� + �T0����0�/

√
2, which is trivially invariant

under the transformation �z →−�z.
Therefore for Ising-type HSE (��x�

i� j =�
�y�
i� j = 0), an initial

state that is invariant for the transformation �S� ↔ �T0��,
���t��A���t�� does not depend on the sign of J , for any
observable A of the quantum system that is invariant for
this transformation. Under these conditions, it is easy to
prove that

���t��S1 ·S2���t��F +���t��S1 ·S2���t��A =−1
2

(38)

Fig. 10. Time evolution of the diagonal matrix elements of the reduced
density matrix of the antiferromagnetic (top panel) and ferromagnetic
(bottom panel) two-spin quantum system for � = 0
15 and � = 0
15
(case (b) of Figure 9, except that the number of spins in the environment
is N = 16).

where the subscript F and A refer to the ferro- and anti-
ferromagnetic quantum system, respectively.
Likewise, for the concurrence we find CF�t� = CA�t�

and similar symmetry relations hold for the other quan-
tities of interest. Of course, this symmetry is reflected
in our numerical data also, hence we can limit ourselves
to present data for the antiferromagnetic quantum system
with Ising-type HSE.
In Figures 11 and 12, we present simulation results for

the two-spin correlation function and concurrence for dif-
ferent values of the parameter � and �. It is clear that
for a certain range of the interaction strength, the quantum
system relaxes to a state that is very close to the ground
state, see Figures 11(c) and 12(c). That is, the presence
of a conserved quantity (the magnetization of the quan-
tum system) acts as a catalyzer for relaxing to the ground
state. Intuitively, we would expect that the presence of a
conserved quantity hinders the relaxation and indeed, the
relaxation in Figure 11 is much slower than in Figure 9.
Notwithstanding this, in the presence of a conserved quan-
tity, the quantum system relaxes to a state that is much
closer to the true ground state than the one it would relax
to in the absence of this conserved quantity.
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〉

〉

Fig. 11. Time evolution of the correlation ���t��S1 · S2���t�� of the
antiferromagnetic quantum system with Ising-type HSE and Heisenberg-
type HE. The model parameters are (a–d) � = 0
075, (e) � = 0
0375,
(f) � = 0
15, and (a) � = 0
075, (b,e) � = 0
15, (c, f) � = 0
30, (d)
�= 1. The number of spins in the environment is N = 16.

One should notice that only in a small range of param-
eters � and � the two-spin quantum system can evolve
into a near-ground state. If the interactions within the bath
is too small, the range of the energy spectrum of the bath
limits the energy dissipation of the system, and the system

Fig. 12. Time evolution of the concurrence of the antiferromagnetic quantum system with Ising-type interaction HSE and Heisenberg-type environment
HE. The model parameters are � = 0
075 and (a) � = 0
075, (b) � = 0
15, (c) � = 0
30, (d) � = 1. The number of spins in the environment is
N = 16.

spins mainly follow its own dynamics just like there is no
bath. On the contrary, if the interactions within the bath
are too strong, a small change of the configuration of the
bath spins will lead to a large change of its energy, there-
fore the direction of the energy flow will oscillate with
time and the quantum system cannot arrive to a state with
approximately stable energy.

5.3. Summary

In general, it turns out that the relaxation to the ground
state is a more complicated process than one would naively
expect, depending essentially on the ratio between parame-
ters of the interaction and environment Hamiltonians. Two
general conclusions are:
(1) the quantum system more easily evolves into its
ground state when the latter is more degenerate (degener-
ate triplet states compared to the singlet) or less entangled
(e.g., up-down state compared to the singlet);
(2) constraints on the system such as existence of addi-
tional integrals of motion can make the evolution to the
ground state more efficient.

An explanation of the first statement is that if the ground
state is more degenerate, its affective dimension in the
Hilbert space is larger and therefore the wave function
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will have more possibilities to evolve into this subspace,
especially if the environment is frustrated. The latter state-
ment looks a bit counterintuitive since it means that it
may happen that a more regular system exhibits stronger
relaxation than a chaotic one. The reason that it may hap-
pen is that introducing an additional integral of motion,
such as the total magnetization, limits the dimensionality
of the available Hilbert space for the quantum system. The
larger the dimensionality of the available Hilbert space,
the more complicated the decoherence process is due to the
appearance of the whole hierarchy of decoherence. A man-
ifestation of this phenomenon has been observed earlier:20

Under certain conditions, the same quantum system as
studied here (four by four reduced density matrix) dis-
plays “quantum oscillations without quantum coherence”
whereas for a single spin in a magnetic field (two by two
reduced density matrix) decoherence can, relatively easily,
suppress the Rabi oscillations completely.

6. DECOHERENCE OF A MANY-SPIN
SYSTEM

In the previous sections, we focused on the quantum sys-
tem with only two spins. Starting from this section we will
consider more complicated systems which contain more
spins, e.g., four to eight spins.
In general when a quantum system interacts with a

quantum environment, there will be energy dissipation and
entanglement of their wave functions. This entanglement
does not necessary lead to a classical mixed state of the
quantum system, especially if the environment has finite
size. But introducing certain properties, a finite quantum
environment can also drive the quantum system to an exact
classical state. In the previous sections, we showed that a
frustrated environment can enhance the decoherence of a

(a)

(b)

(a)

(b)

Fig. 13. Time evolution of the diagonal terms (�i) and sum of the absolute values of the off-diagonal terms ��� in the reduced density matrix of a
Heisenberg-ring HS (J = −5, nS = 4, initial state �UD�S) coupled to a spin glass environment HE (� = 0
15, n = 16, initial state �RANDOM�E) via
(a) Heisenberg interaction HSE (� = 0
075) or (b) Heisenberg-type interaction HSE (� = 0
15). Full decoherence is observed in both cases, and the
system S relaxes to a state with equal weights within each energy subspace, that is, � → 0, a microcanonical ensemble.

two-spin system, and as we will see in what follows, this
is also the case for the many-spin system.

6.1. Origin of the Microcanonical Distribution

Let’s first consider the case that there is no energy dis-
sipation or the energy dissipation is very small. In this
case the decoherence of the quantum system fully orig-
inates from the phase correlation of the environment. In
Figure 13, a Heisenberg-ring with four spins is coupled to
a frustrated spin glass consisting of 14 spins, and the inter-
action between the quantum system and the environment
is isotropic or anisotropic but very small (comparing to
the coupling within the system, i.e., �= 0
15	 �J � = 5).
In the former case the energy of the quantum system is
conserved, and in the latter case the energy dissipation is
very small so that it can be ignored. The system has four
distinct eigenvalues (E1 =−2, E2−4 =−1, E5−11 = 0, and
E12−16 = 1) and sixteen different eigenstates. During the
time-integration of the TDSE, the reduced density matrix
of the system is calculated every � = �/10. In both cases,
the diagonal terms of the reduced density matrix of the
Heisenberg-ring approach a stable value after an initial
decay or increase, and the off-diagonal terms are all zero
(� → 0), which means that in both cases, the four spin
quantum system approaches a fully decoherent state.
Another significant result is that the degenerated energy

eigenstates have the same weigth distribution in the fully
decoherent state, i.e., � → 0, indicating that the final sys-
tem is a microcanonical state in each eigenenergy sub-
space. The diagonal elements of the reduced density matrix
corresponding to degenerate eigenstates with zero weight
in the initial state are zero and remain so during the time
revolution, see �5−11 in Figure 13. This is simply due to
the conservation of energy of the system, and due to the

J. Comput. Theor. Nanosci. 8, 889–911, 2011 903



Delivered by Publishing Technology to: Rice University
IP: 101.78.211.234 On: Thu, 07 Jan 2016 19:13:59

Copyright: American Scientific Publishers

R
E
V
IE
W

Decoherence and Thermalization of Quantum Spin Systems Yuan

Fig. 14. The system represented here is the same as the one in
Figure 13(a), except that the randomness in the coupling constants of
HSE or HE, or the randomness in the initial state of the environment, are
different in the curves A–E. It is clear that the time evolution of ��t�
is not sensitive to the different random values of the coupling constants
or the initial state of the environment if they follow the same type of
random distribution.

fact that the time evolution operator e−iHt prevents chang-
ing the coefficients corresponding to these eigenstates.
In Figure 14, we plot the time evolution of ��t� with

different random realizations for the initial state of the
environment or for the model parameters �

i� j and �
i� j .

The difference between the curves is very small, indicating
that in our model, a particular randomness of the coupling
parameters or initial state is not relevant to the general
properties of the simulation results.
In Figure 15, we show the time evolution of ��t� for

different coupling strengths (�) in the environment. In
general, increasing the coupling strength within the envi-
ronment will increase the effective energy range of the
bath, which leads the decoherence more completely. But as
we have shown in the case of the two-spin system, the cou-
pling strength should not be too large, otherwise the energy
resolution of the bath will be too small to lead the full
decoherence of the system.

Fig. 15. Same as Figure 13(a) except that the range of the coupling
strength (�) in the environment is different.

Fig. 16. Same as Figure 13(a) except that the topological structure (con-
nectivity K) of the environment is different.

In Figure 16, we show the time evolution of lg���t��
for the same systems but with different topological struc-
tures (connectivity K) in the environment. It is clear that
as soon as there is frustrated interaction within the envi-
ronment (K > 0), no matter what kind of topological struc-
ture it is, the decoherence of the quantum system is quite
similar.

6.2. Summary

If there is no energy dissipation, or the energy dissipa-
tion is so small that it can be ignored, then the entangle-
ment between the quantum system and the environment
occurs only in the subspace of the (degenerate) eigen-
states which have nonzero weigth distribution in the ini-
tial state of the quantum system. That is, the possible
pointer states in the mixed states are determined by the
initial state of the quantum system itself. If a particular
environment can lead to the decoherence of the quantum
system without energy dissipation, then turning on the
energy dissipation will still lead to decoherence, and even
more completely. In fact, energy dissipation is not related
to the question whether a quantum system can evolve
into a classical mixed state or not. The main difference
between decoherence with or without energy dissipation
are the number of possible pointer states in the mixed state.
That is, an additional integral of motion of the system
will limit the number of pointer states, and therefore a full
decoherence state is a mixture with microcanonical distri-
bution in each eigenenergy subspace under the extra con-
servation law. On the contrary, if there is enough energy
dissipation between the two systems, then all eigenstates
of the quantum system are possible pointer states. And
more importantly, as we will show in the next section, the
mixed state of the quantum system follows the canonical
distribution.26
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7. THERMALIZATION OF A MANY-SPIN
SYSTEM

In the previous section, we have shown that turning on the
interaction between the many-spin system and the environ-
ment, leads to a reduction of the coherence in the quan-
tum system. The coupling with the environment causes the
initial pure state of the quantum system to evolve into a
mixed state, obtained by tracing out all the degrees of free-
dom of the environment. The pointer states in the mixed
state are determined by the initial state of the quantum

Fig. 17. Simulation results for the diagonal elements �i ≡ �̂ii�t� of the density matrix of S, the energy ES ≡ ES�t�, the effective inverse temperature
b ≡ b�t� and its variance 	≡ 	�t�, and � ≡ ��t� which is a measure for the decoherence in S, as obtained by solving the TDSE for the whole system
with a Heisenberg-ring HS (J =−1, nS = 4), a Heisenberg-type interaction HSE (�= 0
3), a spin glass environment HE (�= 1, n= 18), and � =�/10.
The initial state of the whole system is a product state �UD�S⊗�RANDOM�E. The red dots in the small panels represent the simulation data, and the
black curves are fitting curves (see text).

system if there is an additional integral of motion, e.g., the
conserved energy or magnetization. This leads to a micro-
canonical ensemble under a certain conservation law. On
the other hand, if there is enough energy dissipation with-
out any additional integral of motion, we expect that the
mixed state is a canonical ensemble.26

Earlier demonstrations of the fact that the system can
be in the canonical ensemble state are based on Ergodic
averages43–46 or canonical typicality.47–53 The Ergodic aver-
ages consider the dynamics of a closed quantum system,
and prove that in certain quantum systems, the expectation
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values of the dynamical variables of the system approach
their values for the subsystem that is in the thermal equi-
librium state. This is similar to the assumption of classical
statistical physics, that is, during large enough time, the
trajectory of the many particle system in the phase space
will pass all possible points, and therefore the average of
these points in the phase space will follow a certain distri-
bution. On the contrary, the canonical typicality does not
consider the dynamics of the system but assumes that if
the whole system is in the microcanonical ensemble then
its subsystems are in the canonical ensemble. The state-
ment of the canonical typicality is quite general, but it is
clear that the dynamical procedure is missing. Moreover,
the coupling between the quantum system and the envi-
ronment is assumed to be so small that it can be neglected
in the theory. Therefore it is important to show how the
canonical distribution of statistical mechanics relates to the
dynamical evolution of the quantum system.

7.1. Origin of the Canonical Ensemble

As a frustrated environment is very effective for creating
full decoherence (� → 0) in a quantum spin system, and
full decoherence is a necessary condition for the state of
the system to converge to its canonical distribution, we
have chosen spin glass environments, which have no obvi-
ous symmetries.26

First, we consider a system (Heisenberg-ring HS) inter-
acting (Heisenberg-type HSE) with an environment (spin
glass HE). The system has four distinct eigenvalues (E1 =
−2, E2−4 = −1, E5−11 = 0, and E12−16 = 1) and sixteen
different eigenstates. The environment has 218 eigenstates.
During the time-integration of the TDSE, the reduced den-
sity matrix of the system is calculated every � = �/10
as in the previous section As we described earlier, the
values of the diagonal elements �̂ii yield an estimate for
the effective inverse temperature b�t�, the error 	�t� for
this estimate and the measure ��t� for the deviation from a
non-diagonal matrix. The energy of the system is obtained
as ES�t�= TrS�̂�t�HS.

From the simulation results, shown in Figure 17, it is
clear that for t > 50� , each diagonal element �̂ii of the
reduced density matrix converges to one out of four sta-
tionary values, corresponding to the four non-degenerate
energy levels of the system. This convergence is a two-step
process. First the system looses all coherence, as indicated
by the vanishing of ��t� for t > 50� . The time dependence
of ��t� fits very well to an exponential law

��t�= �
+Ae−t/T2 (39)

with �
 = 0
00128, A = 0
602 and T2 = 8
01� . In the
small panels of Figure 17, the red dots are the simula-
tion data and the black curves are the fitting function.
Likewise, the vanishing of 	�t� on the same time-scale

(T2 = 7
32�), indicates that the density matrix of the sys-
tem converges to the canonical distribution with the same
speed of decoherence.
The effective temperature b�t� and the energy of the

system ES�t� also fit very well to the exponential laws

b�t�= �+Be−t/T1 (40)

and
E�t�= E
+Ce−t/T1 (41)

with �= 0
0962, B =−0
900, and T1 = 13
3� and E
 =
−0
0745, C = −0
952. The estimated values for T1 and
T2 change very little if we choose different random real-
izations for the initial state of the environment or for the
model parameters �

i� j and �
i� j (see Fig. 18). If we change

their range, T1 and T2 also change, as naively expected.
In order to verify the role of the dynamics within the

bath to the thermalization of the quantum system, we plot
the time evolution of 	�t� for different coupling strength
(�) in Figure 19. Similar as the dependence of � on � in
Figure 15, increasing the coupling strength (within a cer-
tain range) will increase the effective energy range of the
bath, which leads to a more complete decoherence and
thermalization.
The simulation results of a similar system with one extra

spin in the quantum system (ns = 5) and one spin less in
the environment �n= 17) are shown in Figure 21, and are
very similar to the ones shown in Figure 17. These simula-
tions demonstrate that the system first looses all coherence
and then, on a longer time-scale, relaxes to its thermal
equilibrium state with a finite temperature. In terms of the
theory of magnetic resonance,96 T1 and T2 are the times
of dissipation and dephasing, respectively. In the case of
very small HE, one should expect, instead of an exponen-
tial decay of � and E, a Gaussian decay, as observed in
Refs. [23–25].
It is necessary to extend the types of interaction

(Hamiltonian) to verify the generality of the above results.

Fig. 18. Same as Figure 17, except that the randomness in the coupling
constants of HSE or HE, or the randomness in the initial state of the
environment, are different in the curves A–E. It is clear that the time
evolution of the effective temperature b�t� is not sensitive to the differ-
ent random values of the coupling constants or the initial state of the
environment if they follow the same type of random distribution.
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Fig. 19. Same as Figure 17 except that the range of the coupling
strength (�) is different in the environment of each curve.

The time evolution of 	�t� for the same systems but
with different topological structures (connectivity K) in
the environment are shown in Figure 20. Increasing the
connectivity in the environment will increase the energy
resolution and make the dynamics in the environment more
complicated, which enhances the approach to the canoni-
cal distribution of the system. This is quite different from
the effect of the topological structure on the decoherence
shown in Figure 16, where as soon as there is frustrated
interaction within the system (K > 0), the decoherence of
the quantum system is quite similar for different topolog-
ical structures.
More results for the system with different symmetries

and connectivities but with the same type of environ-
ments (HE) and the same type of interactions (HSE) are
shown in Figure 22. The systems used are a XY-ring,
a Heisenberg-ring, an Ising-ring, a Heisenberg-triangular-
lattice, and a spin glass. From the results represented in
Figure 22, it is clear that independent of the internal sym-
metries and the connectivity of the system, and indepen-
dent of the initial state of the whole system, all systems

Fig. 20. Same as Figure 17 except that the topological structure (con-
nectivity K) of the environment is different.

relax to a state with full decoherence, except case f. The
main difference between case f and the other cases is the
initial state of the environment. Since the environment in
our model is a highly frustrated system, the LDOS of the
whole system covers the whole spectrum of the energy
space, no matter the initial state of the environmental spins
is all spins up or all spins down, or random spins up and
down, or a random superposition of all the states in the
spin up-down basis. But if the environment is prepared
in the ground state or near ground state, then the LDOS
of the whole system becomes more sharply peaked, see
b and f in Figure 23. Up to a trivial normalization fac-
tor, the LDOS curve for case b is indistinguishable from
the density of states (data not shown) calculated from
the solution of the TDSE using the technique described
in Ref. [93]. This suggests that if the environment starts
from the random superposition of all its energy eigen-
states, all states of the whole system may participate in
the decoherence/relaxation process. In contrast, the LDOS
curve for case f has a very small overlap with the density
of states. Therefore, starting with an environment in the
ground state, only a relatively small number of states par-
ticipates in the decoherence process, as confirmed by the
results for ��t� shown in Figure 22(f).
One should also notice that in case b, � vanishes expo-

nentially with time, whereas in the other cases (a, c, d, e),
� initially increases and then vanishes exponentially with
time, due to the entanglement between the system and the
environment. This observation is in concert with our earlier
work.23–25 Furthermore, in all cases except f, the system
always relaxes to a canonical distribution (	→ 0) as soon
as it is in the state with full decoherence (� → 0), indicat-
ing that the time of decoherence (T2) and the time of ther-
malization (T1) is almost the same. In agreement with the
results depicted in Figure 17, the decoherence time T2 is
shorter than the typical time scale T1 on which the system
and the environment exchange energy. Note that in contrast
to the cases considered in the theory of nuclear magnetic
resonance, in most of our simulations, HS, HE and HSE are

Fig. 21. Same as Figure 17 except that nS = 5 and n= 17.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 22. Simulation results for the energy ES ≡ ES�t�, the effective inverse temperature b ≡ b�t�, its variance 	 ≡ 	�t�, and the deviation from a
diagonal matrix � ≡ ��t� as obtained by the solution of the TDSE for a variety of different systems S coupled to a spin glass environment HE via
a Heisenberg-type interaction HSE. The systems used are (a): XY-ring, (b) and (f) Heisenberg-ring, (c) Ising-ring, (d) Heisenberg-triangular-lattice,
and (e) spin glass. The initial states of the whole system are (a) �GROUND�S ⊗ �RANDOM�E, (b) �UD�S ⊗ �RANDOM�E, (c) �UU �S ⊗ �RR�E,
(d) �UU �S⊗�RANDOM�E, (e) �GROUND�S⊗�UD�E, and (f) ˜�UD�S⊗�GROUND�E. The numbers of spins in the system are nS = 8 for cases (a)–(c)
and nS = 6 for cases (d)–(f). The number of spins in the environment is n= 16 for all cases. The model parameters are J =−1, �= 0
3 and �= 1,
except for case (e) in which �= 1.

comparable so the standard perturbation derivation of �

and E does not work.
The negative temperature (b < 0) is also observed in c

and d. In fact, as the temperature T is defined as

1
T

= dS

dE
(42)

where S and E are the entropy and energy. In a quantum
spin system, the entropy may decrease when the energy
increases. For example, the states with all spins up and all
spins down have the same entropy, but can have totally dif-
ferent energy. Suppose there is no interaction between N

ferromagnetic spins (J > 0), and there is a uniform mag-
netic filed applied on the Z+ direction, then the state with
all spins up is the ground state, and with all spins down is

the eigenstate with highest energy. Changing the magne-
tization of the states from Mmax = N/2 to Mmin = −N/2
will change the sign of the temperature T �M� at the point
M = 0, that is, T > 0 when M > 0 and T < 0 when M < 0.

7.2. Summary

We have shown that if we have a system that interacts with
an environment and the whole system forms a closed quan-
tum system that evolves in time according to the TDSE,
then a frustrated environment with a random distribution
in the energy basis will lead to the full decoherence of
the system. Furthermore, if the system and environment
can exchange energy, the range of energies of the envi-
ronment is large compared to the range of energies of the
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Fig. 23. Simulation results for the local density of states as a function
of the energy. Solid line: Case corresponding to Figure 22(b). The ini-
tial state is �UD�S ⊗�RANDOM�E; Dashed line: Case corresponding to
Figure 22(f). The initial state is �UD�S ⊗�GROUND�E. Reprinted with
permission from [26], S. Yuan et al., J. Phys. Soc. Jpn. 78, 094003
(2009). © 2009, The American Physical Society.

system, then the mixed state of the system is a canonical
distribution.

8. CONCLUSION AND DISCUSSION

The results presented here have been obtained from an
ab initio numerical solution of the TDSE in the absence
of, for instance, dissipative mechanisms, and demonstrate
that the existence of the microcanonical distribution (in
each eigenenergy subspace) and the canonical ensemble is
a direct consequence of quantum dynamics.
We emphasize that our conclusion does not rely on time

averaging of observables, in concert with the fact that real
measurements of thermodynamic properties yield instanta-
neous, not time-averaged, values. Furthermore and perhaps
a little counter intuitive, our results show that relatively
small environments (≈ 20 spins) are sufficient to drive the
system (2–8 spins) to thermal equilibrium and that there
is no need to assume that the interaction between the sys-
tem and environment is weak, as is usually done in kinetic
theory. Note that even if most cases shown in this review
clearly indicate a full decoherence of the quantum system,
it does not mean that the condition of full decoherence is
a nontrivial requirement.
To conclude, we find that:

(1) Frustration of the interactions, either within the envi-
ronment or between the system and the environment,
enhances the decoherence of the quantum system.
(2) The quantum system more easily evolves into its
ground state when the latter is more degenerate or less
entangled, or has certain additional integrals of motion.
(3) The distribution of the state of a quantum system is the
microcanonical or canonical ensemble only if the system
is in a fully decoherent state.

(4) The restriction of a fully decoherent state to be a
microcanonical ensemble per eigenenergy subspace is the
presence of an additional integral of motion except a con-
served energy. For example, a conserved magnetization
of the quantum system prevents parts of the degenerate
eigenstates to be the pointer states.
(5) The restriction of a microcanonical ensemble to be a
canonical ensemble is the presence of an additional inte-
gral of motion, so that the energy of each subspace is
conserved.
(6) The distributions in quantum statistical mechanics,
such as the microcanonical and canonical distributions, are
the direct consequence of quantum dynamics.

Finally we want to discuss the second law of thermody-
namics in quantum systems.
The second law of thermodynamics states that the

entropy of an isolated system which is not in equilibrium
tends to increase over time, approaching a maximum value
at equilibrium. In quantum mechanics, the state of a closed
quantum system is always a pure state and therefore its
entropy is a constant (zero). It is thus clear that the sec-
ond law of thermodynamics is not valid in a closed quan-
tum system. If a quantum system starts to interact with
an environment, its entropy increases from zero but may
not reach a maximum value at equilibrium. The dynamics
of the whole system could be periodical and therefore the
time evolution of the states could be reversible.
Our numerical results show that if the quantum system

becomes a classical mixed state, then the time evolution
becomes irreversible and the entropy becomes stable when
it reaches the maximum value. In fact, the state with the
microcanonical distribution in each eigenenergy subspace
or in the canonical ensemble has the maximum entropy
within all possible states that the system could be. For a
quantum system with a certain energy and a fixed number
of particles it is such that, if there is a conservation law
to restrict some eigenstates in the reduced density matrix,
then the state with maximum entropy corresponds to the
one with all the accessible degenerate states having the
same weigth distribution, i.e., a microcanonical distribu-
tion per eigenenergy subspace. On the other hand, if there
is no such restriction on the eigenstates, then the canonical
ensemble is the state with maximum entropy, as proved by
Jaynes in Ref. [97].
We may conclude that the validity of the second law of

thermodynamics in quantum mechanics is related to the
decoherence process of the quantum system. If a quan-
tum system becomes classical under the influence of the
environment, then its entropy will increase until it reaches
a maximum value of all possible mixed states, i.e., the
microcanonical distribution per eigenenergy subspace or
the canonical ensemble. If a quantum system cannot evolve
into a stable mixed state, then its entropy will not always
follow the second law of thermodynamics.
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